
REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

7.Apr.99
3. REPORT TYPE AND DATES COVERED

DISSERTATION
4. TITLE AND SUBTITLE

A FRAMEWORK FOR EFFECTIVE ALGORITHM VISUALIZATION USING
ANIMATION-EMBEDDED HYPERMEDIA

6. AUTHOR(S)

LT COL HANSEN STEVEN R

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

AUBURN UNIVERSITY MAIN CAMPUS
8. PERFORMING ORGANIZATION

REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

THE DEPARTMENT OF THE AIR FORCE
AFIT/CIA, BLDG 125
2950 P STREET
WPAFB OH 45433

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

FY99-96

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Unlimited distribution
In Accordance With AFI 35-205/AFIT Sup 1

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

19990519 116

14. SUBJECT TERMS 15. NUMBER OF PAGES

257
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF
ABSTRACT

Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

DISSERTATION ABSTRACT

A FRAMEWORK FOR ANIMATION-EMBEDDED HYPERMEDIA VISUALIZATION OF

ALGORITHMS

Steven Ross Hansen

Doctor of Philosophy, March 19, 1999

(M.S., Wright State University, 1986)

(B.S.,Brigham Young University, 1981)

271 Typed Pages

Directed by N. Hari Narayanan

If a "picture is worth a thousand words," then why have attempts over the past decade to use
pictures and animations to replace or supplement traditional instructional methods for teaching
algorithms produced such disappointing results? Numerous studies and experiments have been
conducted to show that pictures and animations can improve learning of challenging, abstract
concepts like mathematical proofs and the algorithms used in computer science. While the
pictures and animations seem to be enthusiastically received by the students, none of the studies
have produced results that show consistently and conclusively that these visual tools actually
improve learning. In fact, the accumulated empirical evidence is mixed at best, and could easily
lead one to abandon the premise that animations are powerful vehicles for effectively conveying
the dynamic behaviors of algorithms. However, this dissertation reports on research based on the
premise that a rethinking of algorithm animation design is required in order to harness its power
to enhance learning. Research reported here explores the integration of previous work in
algorithm animation systems with recent developments in the cognitive and educational domains
to produce a new model for using software visualizations to improve student comprehension. The
model is based on focused learning objectives that drive a top-down design that carefully divides
abstract concepts into discrete chunks for learning. The model takes a user-centered ("what do
we need to show") view rather than a designer-centered ("what can we show") view, and employs
hypermedia and multimodal presentation techniques to improve learning effectiveness. The key
insights are that for algorithm animations to be effective, (1) they should be introduced using
interactive analogies and real-world examples that serve a priming role for subsequent learning,
(2) the animations should be presented within a framework that includes explanatory information
in other appropriate media, and (3) the animations should be presented in varying levels of detail
depending on the learner's capability. In this dissertation, we first summarize prior research on
algorithm animation. Second, we discuss the theoretical foundations of our approach,
architecture of the resulting hypermedia algorithm visualization system, and empirical studies that
show a significant advantage for the system. We then present ablation studies that explore the
features that made our framework effective, and conclude with a discussion of ways this
framework can be implemented for presentation over the Internet.

DTIC QUALITY INSPECTED *

A FRAMEWORK FOR ANIMATION-EMBEDDED HYPERMEDIA

VISUALIZATION OF ALGORITHMS

Certificate of Approval:

Steven Ross Hansen

ft-yn^v /$/(Lt^ ///
ies H. Cross II

Professor
Computer Science and Engineering

Kai-Hsiung Cha
Professor
Computer Science and Engineering

N. Hari Narayanan, Chairman fl
Assistant Professor
Computer Science and Engineering

Roland Hübscher
Assistant Professor
Computer Science and Engineering

fciA^-

John F. Pritchett
Dean
Graduate School

A FRAMEWORK FOR ANIMATION-EMBEDDED HYPERMEDIA

VISUALIZATION OF ALGORITHMS

Steven Ross Hansen

A Dissertation

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Doctorate of Philosophy

Auburn, Alabama

March 19, 1999

©1999

STEVEN ROSS HANSEN

All Rights Reserved

VITA

Steven Ross Hansen, son of Darrel and Margaret (Doxey) Hansen, was born September

23, 1956, in San Angelo, Texas. He graduated with a Bachelor of Science degree in

Computer Science from Brigham Young University in June, 1981. After working as a

computer systems analyst with the United States Air Force, he attended and graduated

from Wright State University, Ohio with a Master's Degree in Computer Science in

March, 1986. He continued his career as a computer systems specialist in the Air Force

and has taught computer courses for Sinclair Community College, Ohio, Texas Luthern

College, Texas, and the Air Command and Staff College, Alabama. He entered Graduate

School at Auburn University in January, 1996. He married Elizabeth Long, daughter of

Page and Frances (Chase) Long, on May 19, 1979. They have four children: Kristina

Renae Hansen, Daniel Steven Hansen, Trieste Michelle Hansen, and Kyle Steven Hansen.

in

DISSERTATION ABSTRACT

A FRAMEWORK FOR ANIMATION-EMBEDDED HYPERMEDIA

VISUALIZATION OF ALGORITHMS

Steven Ross Hansen

Doctor of Philosophy, March 19,1999

(M.S., Wright State University, 1986)

(B.S., Brigham Young University, 1981)

271 Typed Pages

Directed by N. Hari Narayanan

If a "picture is worth a thousand words," then why have attempts over the past decade to use

pictures and animations to replace or supplement traditional instructional methods for teaching

algorithms produced such disappointing results? Numerous studies and experiments have been

conducted to show that pictures and animations can improve learning of challenging, abstract

concepts like mathematical proofs and the algorithms used in computer science. While the

pictures and animations seem to be enthusiastically received by the students, none of the studies

have produced results that show consistently and conclusively that these visual tools actually

improve learning. In fact, the accumulated empirical evidence is mixed at best, and could easily

lead one to abandon the premise that animations are powerful vehicles for effectively conveying

IV

the dynamic behaviors of algorithms. However, this dissertation reports on research based on the

premise that a rethinking of algorithm animation design is required in order to harness its power

to enhance learning. Research reported here explores the integration of previous work in

algorithm animation systems with recent developments in the cognitive and educational domains

to produce a new model for using software visualizations to improve student comprehension.

The model is based on focused learning objectives that drive a top-down design that carefully

divides abstract concepts into discrete chunks for learning. The model takes a user-centered

("what do we need to show") view rather than a designer-centered ("what can we show") view,

and employs hypermedia and multimodal presentation techniques to improve learning

effectiveness. The key insights are that for algorithm animations to be effective, (1) they should

be introduced using interactive analogies and real-world examples that serve a priming role for

subsequent learning, (2) the animations should be presented within a framework that includes

explanatory information in other appropriate media, and (3) the animations should be presented

in varying levels of detail depending on the learner's capability. In this dissertation, we first

summarize prior research on algorithm animation. Second, we discuss the theoretical

foundations of our approach, architecture of the resulting hypermedia algorithm visualization

system, and empirical studies that show a significant advantage for the system. We then present

ablation studies that explore the features that made our framework effective, and conclude with a

discussion of ways this framework can be implemented for presentation over the Internet.

ACKNOWLEDGEMENTS

The author would like to thank Dr. Mary Hegarty of the University of California, Santa

Barbara for her help with the statistical analyses, Dr. N. Hari Narayanan for his patience, insight

and motivating influence in the conduct of this research, Dr. Dean Hendrix and Dr. Daniela

Marghitu at Auburn University for graciously supporting this research by providing access to

their classes and computer laboratory resources, to the students in the Computer Science and

Engineering Department for their unselfish participation in the experiments that form the

backbone of this research, and to the National Science Foundation for providing generous

funding to support this project. Thanks are due to family members Libby, Kristi, Danny, Trieste

and Kyle for their loving support during the course of this research.

VI

TABLE OF CONTENTS

TABLE OF FIGURES xi

TABLE OF TABLES xiv

1. INTRODUCTION 1

2. PRIOR RESEARCH 4

2.1. RELATED WORK: 'PAVING THE WAY' 4

2.1.1. The Power of Multimedia 4
2.1.2. Hypermedia in Computer-based Education 7

2.2. ALGORITHM ANIMATION RESEARCH 11

2.2.1. Overview 11
2.2.2. What Is Algorithm Animation? 11
2.2.3. Why Study Algorithm Animation? 13
2.2.4. An Overview of Existing Algorithm Animation Systems 15
2.2.5. Empirical Studies of Algorithm Animation Effectiveness 32

2.3. THE PROBLEM: MOVING FROM ANIMATION TO VISUALIZATION 36

3. TOWARDS A FRAMEWORK FOR EFFECTIVE VISUALIZATION (OR
'WHAT WAS MISSING BEFORE') 40

3.1. COMPONENTS OF THE FRAMEWORK 40

3.1.1. Objective-based Design 41
3.1.2. Multimodal Presentations 43
3.1.3. Bridging Analogies 44
3.1.4. Views at Multiple Levels 47
3.1.5. Semantic Chunking 47
3.1.6. Purposeful Interaction 49

3.2. PROTOTYPE DEVELOPMENT 51

3.2.1. HaWis Architecture 57
3.2.2. Fundamentals Module 52

Vll

3.2.3. The Conceptual View 53
3.2.4. The Detailed View 62
3.2.5. The Populated View 65
3.2.6. Questions Module 66

4. VALIDATING THE FRAMEWORK 68

4.1. EFFECTIVENESS: WHAT ARE WE LOOKING FOR? 68

4.2. EXPERIMENTS WITH HYPERMEDIA ALGORITHM VISUALIZATIONS 70

4.2.1. Experiments la and lb: Comparison of HalVis
with Textual Learning 73

4.2.2. Experiment II: Comparison of HalVis
to Learning from Text with Exercises 84

4.2.3. Experiment III: Comparison of HalVis
and Lecture-based Learning 93

4.2.4. Experiment IV: Comparison of HalVis
and Learning from Text & Conventional Animation 102

4.3. GENERAL DISCUSSION 109

4.3.1. Comprehension 109
4.3.2. Satisfaction 109
4.3.3. Retention 110
4.3.4. Speed 112

A A. CRITICISMS 113

4.5. SUMMARY OF EMPIRICAL COMPARISONS 114

5. ABLATION STUDIES (WHAT MADE A DIFFERENCE?) 117

5.1. EXPERIMENT V: ABLATION OF FEATURES 118

5.2. EXPERIMENT VI: ONE VIEW REMOVED 127

5.3. EXPERIMENT VII: Two VIEWS REMOVED 135

5.4. SUMMARY OF ABLATION EXPERIMENTS 144

6. EXTENDING THE FRAMEWORK TO THE INTERNET 147

6.1. ACCESSING THE HALVIS PROTOTYPE 147

6.2. HALVIS LIMITATIONS 148

Vlll

6.3. TOWARDS A GENERAL AUTHORING ENVIRONMENT 148

6.4. JA VIZ LANGUAGE SYNTAX 151

6.5. RUNNING A JA VIZ VISUALIZATION 154

7. CONCLUSION 156

7.1. RESEARCH CONTRIBUTIONS 156

7.2. FUTURE DIRECTIONS 157

8. REFERENCES 160

APPENDIX A: THE HALVIS VISUALIZATIONS 171

A.l. FUNDAMENTAL MODULE SCREENS 172

A.2. BUBBLE SORT 177

A.3. SELECTION SORT 180

A.4. MERGE SORT 183

A.5. MERGE ALGORITHM 186

A.6. QUICKSORT 189

A.7. SHORTEST PATH 192

APPENDIX B- MATERIALS USED DURING EXPERIMENTS 195

B.l CONSENT FORM 195

B.2 DEMOGRAPHIC SURVEY 197

B.3 USER SATISFACTION SURVEY 199

B.4 EXPERIMENTS WITH TEXT 202

B.4.1 PostTest for Experiment la 202
B.4.2 PostTest for Experiment lb 205

B.5 EXPERIMENTS WITH TEXT AND EXERCISES 210

B.5.1 PostTest for Experiment II 210

IX

B.5.2 Handout for Text Group of Experiment II 215

B.6 EXPERIMENTS Wrra LECTURES 224

B.6.1 PostTest for Experiment III 242

B.7 EXPERIMENTS WITH OTHER ALGORITHM ANIMATION SYSTEMS 228

B.7.1 PostTest for Experiment TV 228
B.7.2 Screen Captures of Visualization Used by AA Group 231

B.8 EXPERIMENT V: ABLATION OF FEATURES 232

B.8.1 PostTest for Features Ablation Study 232

B.9 EXPERIMENT VI: DUAL VIEW ABLATION 235

B.9.1 PostTest for Dual View Ablation 235

B.10 EXPERIMENT VII: SINGLE VIEW ABLATION 238

B.10.1 PostTest for Single View Ablation Study 238

APPENDIX C: USAGE AND INTERACTION DATA 242

C.l EXPERIMENT n USAGE AND SATISFACTION DATA 243

C.2 EXPERIMENT VI USAGE AND SATISFACTION DATA 248

APPENDIX D: THE JAWAA COMMANDS 250

D.l GRAPHIC OBJECT CREATION COMMANDS 250

D.2 DATA STRUCTURE OBJECT CREATION COMMANDS 252

D.2.1 Tree Objects 252
D.2.2 Graph Objects 253
D.2.3 Array Objects 255
D.2.4 Stack Objects 255
D.2.5 Queue Objects 256

D.3 ACTION COMMANDS 257

TABLE OF FIGURES

Figure 2.1. Screen Capture From the Film Sorting Out Sorting (Baecker, 1981) 14

Figure 2.2. Balsa-H Screens Views of the Quicksort and SelectionSort Algorithms

(Brown, 1988a) 16

Figure 2.3. Zeus Screen View of the Binpacking Algorithm 17

Figure 2.4. WebGaigs Screen View Showing Multiple Snapshots of the Quicksort Algorithm. 18

Figure 2.5. XTango Screen View of Kruskal's Algorithm 20

Figure 2.6. JAWAA Screen View Showing the Depth-First Search Algorithm 21

Figure 2.7. Swan Screen View Showing a Network Flow Problem 22

Figure 2.8. The C Code Animator Application Showing An AVL Tree 23

Figure 2.9. The Jeliot Framework Showing the SelectionSort Algorithm 24

Figure 2.10. The JCAT Environment Showing the Quicksort Algorithm 25

Figure 2.11. The AACE Framework Showing the BucketSort Algorithm 26

Figure 2.12. AlgoNet Screen View 27

Figure 2.13. The XSortLab Application Showing the Quicksort Algorithm 28

Figure 2.14. The Sort Animator Showing the Quicksort Algorithm 29

Figure 2.15. An Example of an Interesting Event Script and the Animation It Creates 31

Figure 3.1. The HalVis Architecture 52

Figure 3.2. The Conceptual View Screen of the BubbleSort Algorithm 55

Figure 3.3. The BubbleSort Animated Analogy 55

Figure 3.4. The Conceptual View Screen of the SelectionSort Algorithm 56

Figure 3.5. The SelectionSort Algorithm Animated Analogy 56

Figure 3.6. The Conceptual View Screen of the MergeSort Algorithm 57

Figure 3.7. The MergeSort Algorithm Animated Analogy 57

Figure 3.8. The Conceptual View Screen of the Merge Algorithm 58

Figure 3.9. The Merge Algorithm Animated Analogy 58

Figure 3.10. The Merge Algorithm Interactive Simulation 59

Figure 3.11. The Conceptual View Screen of the Quicksort Algorithm 60

Figure 3.12. The Quicksort Animated Analogy 60

Figure 3.13. The Conceptual View of the Shortest Path Algorithm 61

Figure 3.14. The Shortest Path Algorithm Animated Analogy/Simulation 61

Figure 3.15. The Description Screen For the MergeSort Algorithm 63

Figure 3.16. The Detailed View Screen of the MergeSort Algorithm 64

XI

Figure 3.17. A View of the Control Panel of the Detailed View Screen 64

Figure 3.18. The Populated View Screen 66

Figure 3.19. Feedback-Style Question 67

Figure 3.20. Tickler-Style Question 67

Figure 4.1. Experiment la Box Plots 77

Figure 4.2. Experiment la Individual Results, By Group 78

Figure 4.3. Experiment lb Box Plots 82

Figure 4.4. Experiment II Box Plots 88

Figure 4.5. Experiment II Individual Results, By Group 89

Figure 4.6. Comparison of Post-Test Responses, By Group 91

Figure 4.7. Comparison of AV Group Pre-Test and Post-Test Responses 92

Figure 4.8. Comparison of Group Pre-Test, Mid-Test and Post-Test Performance 96

Figure 4.9. Comparison of Group Performance Change in Tests 96

Figure 4.10. Experiment m Box Plots 100

Figure 4.11. Experiment TV Box Plots 106

Figure 5.1. Improvement by Group for Experiment V (Features Removed) 122

Figure 5.2. Experiment V Box Plots 123

Figure 5.3. Time/Performance Comparison for Experiment V (Features Removed) 125

Figure 5.4. Animation Execution Summary for Experiment V 126

Figure 5.5. Improvement by Group for Experiment VI (1 -View Removed) 131

Figure 5.6. Experiment VI Box Plots 131

Figure 5.7. Time/Performance Comparison for Experiment VI (1-View Removed) 132

Figure 5.8. Experiment VI Comparison of Question Responses 133

Figure 5.9. Animation Execution Summary for Experiment VI (1-View Removed) 134

Figure 5.10. Improvement by Group for Experiment VII (2-Views Removed) 138

Figure 5.11. Experiment VÜ Box Plots 139

Figure 5.12. Time/Performance Comparison for Experiment VH (2-Views Removed) 140

Figure 5.13. Experiment VH Detailed Time Data For Each Screen 142

Figure 5.14. Experiment VII Comparison of Question Responses 143

Figure 6.1. The JAVIZ Screen Depicting the BubbleSort Algorithm 151

Figure A.l.l. Fundamentals Module Screen- Representation 172

Figure A.1.2. Fundamentals Module Screen- Sequence 172

Figure A.1.3. Fundamentals Module Screen- Selection 173

Figure A. 1.4. Fundamentals Module Screen- Iteration 173

Figure A.1.5. Fundamentals Module Screen- Recursion 174

Figure A.1.6. Fundamentals Module Screen- Efficiency 174

Figure A.1.7. Fundamentals Module Screen- Sorted Data 175

Figure A.1.8. Fundamentals Module Screen- Swapping 175

xil

Figure A.1.9. Fundamentals Module Screen- Picking Pivots 176

Figure A.1.10. Fundamentals Module Screen- Graph Terms 176

Figure A.2.1 Bubble Sort Algorithm Conceptual View Screen 177

Figure A.2.2. Bubble Sort Algorithm Description Screen 177

Figure A.2.3. Bubble Sort Algorithm Detailed View Screen 178

Figure A.2.4. Bubble Sort Algorithm Populated View Screen 178

Figure A.2.5. Bubble Sort Algorithm Question Screen 179

Figure A.3.1 Selection Sort Algorithm Conceptual View Screen 180

Figure A.3.2. Selection Sort Algorithm Description Screen 180

Figure A.3.3. Selection Sort Algorithm Detailed View Screen 181

Figure A.3.4. Selection Sort Algorithm Populated View Screen 181

Figure A.3.5. Selection Sort Algorithm Question Screen 182

Figure A.4.1 MergeSort Algorithm Conceptual View Screen 183

Figure A.4.2. MergeSort Algorithm Description Screen 183

Figure A.4.3. MergeSort Algorithm Detailed View Screen 184

Figure A.4.4. MergeSort Algorithm Populated View Screen 184

Figure A.4.5. MergeSort Algorithm Question Screen 185

Figure A.5.1 Merge Algorithm Conceptual View Screen 186

Figure A.5.2. Merge Algorithm Description Screen 186

Figure A.5.3. Merge Algorithm Detailed View Screen 187

Figure A.5.4. Merge Algorithm Populated View Screen 187

Figure A.5.5. Merge Algorithm Question Screen 188

Figure A.6.1 Quicksort Algorithm Conceptual View Screen 189

Figure A.6.2. Quicksort Algorithm Description Screen 189

Figure A.6.3. Quicksort Algorithm Detailed View Screen 190

Figure A.6.4. Quicksort Algorithm Populated View Screen 190

Figure A.6.5. Quicksort Algorithm Question Screen 191

Figure A.7.1 Shortest Path Algorithm Conceptual View Screen 192

Figure A.7.2. Shortest Path Algorithm Description Screen 192

Figure A.7.3. Shortest Path Algorithm Detailed View Screen 193

Figure A.7.4. Shortest Path Algorithm Populated View Screen 193

Figure A.7.5. Shortest Path Algorithm Question Screen 194

Figure C.l. Summary of Animation Executions For All Experiments 242

Figure C.2. Actual and Perceived Detailed View Animation Executions, Experiment II 245

Figure C.3. Actual and Perceived Populated View Animation Executions, Experiment II 246

Figure C.4. Actual and Perceived Animation Executions, Experiment VI 248

Xlll

TABLE OF TABLES

Table 3.1. List of Analogies Used In HalVis 54

Table 4.1. Prior Experiments Involving Algorithm Animation 70

Table 4.2. Experiment Summary 72

Table 4.3. Experiment la Statistical Summary 77

Table 4.4. Experiment lb Statistical Summary 82

Table 4.5. Comparison of Results of Experiments la and lb 83

Table 4.6. Experiment II Statistical Summary 87

Table 4.7. Experiment HI Statistical Summary: Between Groups (Overall Performance) 98

Table 4.8. Experiment III Statistical Summary: Between Groups (Improvement) 99

Table 4.9. Experiment HI Statistical Summary: Within Group (Improvement) 99

Table 4.10. Experiment rV Statistical Summary 106

Table 4.11. Comparison of Results With Lawrence et al. (1994) 108

Table 5.1. Ablation Experiment Summary 118

Table 5.2. Experiment V Demographic Summary 120

Table 5.3. Statistical Summary of Features Ablation Study 123

Table 5.4. Experiment VI Demographic Summary 128

Table 5.5. Views Available To Groups For Experiment VI (1-View Removed) 129

Table 5.6. Statistical Summary For Experiment VI (1-View Removed) 133

Table 5.7. Experiment VII Demographic Summary 136

Table 5.8. Views Accessible To Groups For Experiment VH (2-Views Removed) 137

Table 5.9. Statistical Summary For Experiment VII (2-Views Removed) 143

Table 6.1. The PostMessage Command 152

Table 6.2. The PostPseudocode Command Sequence 152

Table 6.3. The HighlightLine Command 153

Table 6.4. The LogicalPause Command 154

Table 6.5. Sample HTML To Execute a Local Animation Script 154

Table C.l. Experiment II Satisfaction Survey Data 243

Table C.2. Summary of Student Remarks and Comments Following Experiment II 247

Table C.3. Experiment VI Satisfaction Survey Data 248

Table C.4. Summary of Student Remarks and Comments Following Experiment VI 249

xiv

1. INTRODUCTION

"A picture is worth a thousand words," so goes the old Chinese proverb. There is

certainly a wealth of evidence that supports this notion of the educational richness and power of

visual over textual media. Psychological studies of learning, memory, motivation, and problem

solving show that coupling pictures with text forms a very effective combination to help students

learn new concepts. One study, considering the tremendous advances in computer technology to

produce and deliver graphical software, suggested that if a picture was worth a thousand words,

then a dynamic simulation may be worth a thousand pictures (Whitney & Urquhart, 1990).

Many computer science instructors and researchers have embraced this idea, and have

endeavored over the past 15 years to exploit the dynamic power of animations to help students

learn algorithms. Dozens of systems have been developed, enthusiastically praised by both

students and instructors. However, before any new instructional technique is advocated, it

should be empirically tested to show it provides an educational advantage over existing methods.

Intuition and opinion alone are not sufficient.

Herein lies the perplexing paradox. Contrary to widespread intuition, despite the

enthusiasm, despite the tremendous advances in multimedia technology, and despite over a

decade of extensive research, attempts to use animations to facilitate learning algorithms have

failed to produce compelling evidence of their instructional effectiveness and have not led to

their widespread use in computer science curricula. Is it because animation is not an effective

teaching medium? Should educators use these results to forgo the use of algorithm animation?

1

Current empirical results seem to defy our intuition, and may lead to prematurely abandoning a

promising instructional approach. Therefore, we believe that further investigation is required to

identify factors that lead to success, and this forms the primary goal of this research.

The purpose of this research is to study and build on previous efforts, based on the

premise that previous attempts at using animation to teach algorithm behavior were

unsatisfactory not because of a flaw with animation as a technique, but because of the approach

used to convey the animations. Our working hypothesis is that a rethinking of algorithm

animation design is required in order to harness its power to enhance learning. The goals of the

research are to develop a theoretical framework of visualization design that leads to effective

instruction, to conduct a series of formal empirical studies using computer science students to

validate the framework, and produce a system that allows widespread use of the framework over

the Internet.

This document is structured as follows. Chapter 2 contains a discussion of previous

research in cognitive science, hypermedia, and algorithm animation, including a brief survey of

existing algorithm animation systems and empirical studies involving those systems. Chapter 3

presents the unique combination of features that we believe are needed to provide a framework

for effective learning using animation and hypermedia, and describes how those features were

incorporated in the design of a system developed to test our ideas and hypotheses. Chapter 4

describes the experiments that we conducted to validate the effectiveness of our framework

against popular teaching methods such as textbooks, lectures, and other animation systems.

Chapter 5 dissects and analyzes the framework in a series of experiments that removed selected

features and views in order to identify those components that led to the significant results

reported in Chapter 4. Chapter 6 describes the efforts to make the experimental framework

available to the general public as well as work performed to port the capabilities to Internet-

based platforms. Chapter 7 summarizes this research and presents ideas for future research.

Finally, there are several appendices that provide the materials used during the various

experiments, screen captures of each of the visualizations that have been created to date, and

interaction data captured during the experiments that may be of value to other research efforts.

2. PRIOR RESEARCH

The foundations of current algorithm animation research are rooted in developments and

breakthroughs in other areas. This chapter highlights relevant findings in diverse topics such as

graphics, multimedia, human-computer interaction design, computer-based instructional systems,

and animation. A survey of algorithm animation systems follows, along with a discussion of

empirical research that has been conducted to evaluate the educational effectiveness of these

systems. This will set the stage for Chapter 3, which examines possible reasons for the mixed

and disappointing results of current systems and ways to address the shortcomings.

2.1. RELATED WORK: 'PAVING THE WAY'

2.1.1. THE POWER OF MULTIMEDIA

The past decade has witnessed dramatic improvements in the power of computer

hardware and the ease of use of graphical software programs. Coupled with extremely attractive

prices and easy-to-use graphical software, superb multimedia presentations have become a

widespread reality. Exploiting these features to improve the process of training and education is

understandably increasing. It can be argued that the visual sense is the strongest source of human

information acquisition, constantly receiving and processing millions of bits of information.

Blackwell (1996) states that pictures are good at showing abstraction, that pictures are a

universal form of communication, and that images can supplement other forms of

communications even to the illiterate. Studies show that humans can grasp the content of a

picture much faster than they can scan and understand text because of our ability to recognize

spatial configurations and relationships (Kamada & Kawai, 1991), and that visual images

increase learner attention (Daily, 1994). Matlin (1989) cited several studies on retention and

recognition, where people had a remarkable 99.7% retention rate of images seen within 2 hours,

and 63% recollection of 2560 images shown a year before. Duchastel (1978) states that pictures

serve three key roles: (1) they attract the learner's attention; (2) they can help the reader

understand information that is hard to describe in words; and (3) they can reduce the likelihood

that information is forgotten.

Putting motion to pictures, thereby creating an animation, presents an extra dimension

beyond static diagrams. A study by Hegarty (1992) showed that individuals, when presented with

static diagrams of mechanical devices, generally perform mental animations by inferring the

motion/kinematics of the objects in the diagram along the causal chains of events they perceive.

Explicit, computer-presented animation, in addition to depicting aspects such as trajectory,

synchronization and motion, can be used to call attention to aspects of a problem that might

otherwise go unnoticed (Brown, 1988a). Animation has been shown to improve understanding of

dynamic processes and machines (Reiber, 1990). Reiber, Boyce and Assad conducted a study

(1990) using a computer based science lesson to teach introductory Newtonian mechanics to

adults. Their results showed that students who viewed the animations were able to complete the

post-tests in significantly less time.

Multimedia systems tap the synergy of combining visual images with other forms of

media, as shown by several studies by Mayer (Mayer & Sims, 1994; Mayer, 1989). They

observed that students were better able to recall and transfer what they had learned from a

science textbook when text and illustrations were presented next to each other rather than

separately. Mayer claimed that the labeled illustrations played two roles: guiding student

attention and helping them build internal connections between ideas in the text. Subsequent

experiments by Mayer and Anderson (1991,1992) considered the use of animation and narration

to help students understand scientific explanations. In two experiments, college students viewed

animations and/or listened to narrations explaining the operation of a bicycle pump. Students

who saw the animation and listened to the narration simultaneously outperformed all other

groups on a creative problem solving test. Their work is an extension of the 'Dual-Coding'

theory described by Paivio (1986) which suggests that humans possess two information

processing systems, one that stores and represents information verbally and another that is visual.

Learning is enhanced when material is presented to the student in these modes in ways that

encourages the building of referential connections between the visual and verbal modes. Mayer

and Moreno (1998) summarized these results as a set of principles that designers should follow

to tap the potential of multimedia learning environments: designers should (1) present

explanations in multiple media, (2) present the multiple media contiguously, (3) use audio to

avoid splitting the student's visual attention and (4) keep media brief and focused, thereby

enhancing coherence.

A study by Palmiter and Elkerton (1993) compared the use of animated demonstrations,

written text and narrated animation for teaching users how to operate a particular graphical

interface. They expected that the narrated animation group would perform the best with

animation aiding the initial learning and narration aiding retention and transfer. Their results

showed that the performances of the animation-only and narrated animation groups were very

similar and better than the text group. The animation group was faster and enjoyed the lesson

more, according to user surveys.

2.1.2. HYPERMEDIA IN COMPUTER-BASED EDUCATION

Hypermedia and multimedia are being used increasingly as teaching and tutoring tools.

Daily (1994) cites several studies of multimedia instruction that report dramatic improvements in

retention and learner attention while at the same time reducing cost and overall training time.

She presents the results of several experiments comparing the effectiveness of multimedia

learning to traditional classroom techniques for certain engineering applications. She concludes

that multimedia greatly increased student participation and was at least as effective as traditional

teaching methods. Bagui (1998) cites another eight studies that show computer-based

multimedia helped people learn more quickly than classroom lecture. Crosby and Stelovsky

(1995) reported similar findings, stating that the dynamic, interactive and visual capabilities of

multimedia courseware led to better student performance and higher class attendance for the

multimedia instruction sessions.

Narayanan and Hegarty (1998) describe research involving the efficacy of diagrams, text,

and animation as teaching and training tools. They build a model of comprehension and provide

guidelines for the development of interactive hypermedia manuals, particularly of machines

where motion is involved. The central tenet of their model is that users follow certain steps

when given a multimodal presentation: (1) they decompose the material, (2) they construct a

mental model based on both referential and representational connections, (3) they determine the

causal chains of events, and (4) they mentally animate the model to infer results. Properly

designed hypermedia systems facilitate all these steps in ways that conventional texts cannot.

In addition to providing information in multiple modes, hypermedia technology allows

multiple ways of organizing it and presenting it to the student. Most studies favor a guided but

flexible navigational approach, where novice students are guided by a natural navigational path

through the screens of an educational sequence, but provides knowledgeable users with the

ability to bypass sections and directly navigate to desired topics. A more critical issue is how to

organize educational content. Information processing theory (Miller, 1956) refers to a

meaningful unit of information as a 'chunk,' and suggests that the average person can hold up to

seven chunks in short term memory at a time. Blackwell (1996) suggests that the reason people

learn more quickly through pictures than text is because a picture is stored in the brain as an

information-rich chunk, in contrast to words that are stored and processed one at a time. Other

authors suggest that chunk sizes are related to expertise (Vessey, 1985) and that chunking may

help in the retention process (Wang and Arbib, 1993). Bagui (1998) claims that hypermedia

systems are inherently chunked because the viewer sees information presented in a prepared

series of pictures, text and sound clips connected together in a prepared sequence. Another study

(Recker, Ram, Shikano, Li & Stasko, 1996) suggest that information is processed more easily

and faster if it is appropriately chunked into 'cognitively relevant' pieces based on learning

goals.

Simply using multimedia in computer-based education is not a guarantee for educational

success, however. One criticism of multimedia training has been labeled the 'TV syndrome' or

the 'hands-on, mind-off problem, where the media is entertaining and colorful but educationally

useless because it fails to engage the reasoning and inference processes that must be used to

understand complex material. Addressing this concern is research in the areas of interactivity,

self-diagnosis and systems based on learning objectives, discussed below.

Hypermedia is not inherently interactive simply because the reader controls navigation

and pacing of the courseware. Merely watching a simulation is not sufficient to trigger learning

(Reed, 1985; Pane, Corbett & John, 1996; Rappin, Guzdial, Realff & Ludovice, 1997).

Yaverbaum, Kulkarni and Wood (1997) summarize several studies about the advantage of active

over passive learner paradigms in hypermedia systems, stating that when students are doing and

not just watching, multimedia offers serious improvements, and that the active paradigm engages

the student better in the process of discovery, reflection and explanation. Theories in

constructivism suggest that the learner needs to be actively involved rather than passively

accepting information, and views the teaching process as a form of apprenticeship, where the

expert (the teacher or carefully designed computer-based instruction) collaborates with the

student using scaffolded lessons that nurture, coach, engage problem solving skills and

encourage reflection (Narayanan Hmelo, Petrushin, Newstetter, Guzdial & Kolodner, 1995).

One such system, called STABLE, (SmallTalk Apprentice-Based Learning Environment),

showed that a principled approach to hypermedia design led to success even with less-than-

perfect scaffolding (Guzdial & Kehoe, 1998).

In developing a multimedia learning environment to study and analyze animal behavior,

researchers stated that "to expect a learner to discover [complex skills and knowledge] through

free exploration in a rich multimedia environment is not enough. A pure hypermedia approach is

not sufficient" (Boyle, Stevens-Wood, Feng and Tikka. 1996). To combat learner complacency,

they developed learning objectives and used tests at the end of learning blocks to ensure target

competencies were mastered before letting students move on to new material. They reported that

over 80% of the students indicated a preference for this feature. Shikano, Recker and Ram

(1996) examined how students interacted with multiple media employed by their hypermedia

system called AlgoNet. They noted that hypermedia systems can falsely lead some students to

the illusion that they know all the materials covered, and suggested the use of a self-diagnosis

node for students to use to reflect on their understanding, and help determine which nodes to

visit. Thus, scaffolding, navigational aids, and self-reflective prompts are needed to avoid the

behavior noted by Pane et al. (1996), who observed that "even motivated students cannot be

10

relied on to take full advantage of exploratory opportunities" in hypermedia systems that lack

these capabilities.

Pane also observed the importance of authors using well-defined educational goals to

help guide and enhance hypermedia learning. The importance of well-thought out learning

objectives cannot be underestimated. Bloom (1956) showed how learning objectives are critical

to success in each of the six levels in his taxonomy of learning. In the cognitive domain, which

deals with the acquisition and use of information, these levels are:

• Knowledge: activities such as remembering, memorizing, recognizing, and recalling

facts.

• Comprehension: activities such as interpreting, rewording, explaining, organizing,

and translating information and ideas.

• Application: activities such as constructing, demonstrating, problem solving, and

applying facts/rules/principles to produce a desired result.

• Analysis: activities such as decomposition, classification, identifying components,

and contrasting.

• Sythesis: activities such as organizing, designing, creating/combining ideas to form

a new one, and inferences about unstated behaviors.

• Evaluation: activities such as value judgements, defending, arguing, resolving

controversies, and assessing correctness.

Bloom showed how instructors could find greater success in teaching when lessons were

developed to meet one of these learning levels, especially when the objectives were written and

stated beforehand. Reed (1985) referred to it another way, as an 'external lesson strategy,'

noting its importance in order to focus student attention on pertinent features of the animated

display. Yaverbaum et al. (1997) concluded that multimedia offers a good solution to certain

11

educational ills when delivered within a framework based upon appropriate learning objectives

and good design principles. These are essential for understanding.

2.2. ALGORITHM ANIMATION RESEARCH

2.2.1. OVERVIEW

Over ten years ago, with the unveiling of the movie Sorting out Sorting at SIGGRAPH-

81, the idea of using graphics and animation to illustrate the dynamic behavior and functionality

of computer algorithms was born. It appeared to hold great promise as an instructional aid, and

since then over a hundred software visualization systems have been built (Price, Baecker &

Small, 1993). Some of the best known algorithm animation systems are Balsa (Brown, 1988a,

1988c) and Tango (Stasko, 1990), which, with a host of variants and successors, seem to have

been developed in the belief that algorithm animations would serve as effective supplements to

help students learn about algorithms. This was a compelling goal, since computer science

students generally find the subject of algorithm design particularly challenging, and any

techniques that could help the learning process would save time and reduce frustration.

2.2.2. WHAT IS ALGORITHM ANIMATION?

An algorithm is a clearly specified set of instructions to be followed to efficiently and

effectively solve a problem. Governed by mathematical constraints, they define a series of

operations that manipulate abstract data structures over time until a terminating condition is

reached. Algorithms are used extensively in computer science, and are one of the building

blocks of computer software. However, unlike the tangible objects studied in other sciences,

algorithms are inherently abstract entities. Not only do they lack any concrete representation in

the natural world, they define dynamic processes that change over time, making them difficult to

12

teach and to learn. Most authors and instructors make use of graphical notations and diagrams as

visual aids in an effort to provide a concrete representation of the abstract components of an

algorithm. Many use sequences of diagrams to help depict algorithmic behavior and changes

over time. Recent breakthroughs in computer graphics technology provide new opportunities to

illustrate algorithmic behavior. One such technique is animation.

Algorithm animation has been defined as the process of abstracting the data, operations

and semantics of computer algorithms, and then creating moving graphical views of those

abstractions (Stasko, Domingue, Brown & Price, 1998). The animation becomes a time-evolving

graphical depiction of how the algorithm's operations affect the data structures associated with

the algorithm. By mapping the abstract entities of the computation to the visual entities on a

computer screen, algorithm animation provides the viewer with a concrete depiction of how the

algorithm manipulates data items and achieves its goals over time through a series of operations.

Hence, well-designed algorithm animations enable students to see the inner workings that are

otherwise hidden. The typical approach employed by most animation systems is to use simple

geometric shapes (bars, circles, and dots) to represent individual data elements, and to move

these shapes to depict the manipulation and transformation of data by the algorithm.

Many believed that creating an animation of an algorithm is simply a process of

assigning a graphical shape to display each access or update to the variables associated with an

algorithm's execution. However, algorithm animation turned out to be much more difficult. In

his seminal work on algorithm animation, Brown (1988a) summarizes several problems that

algorithm animation designers must face, including the difficulty of capturing operations, real-

time performance and limitations of information displays. Of these, deciding on what to depict

and how to represent it are generally recognized as the most challenging task and the one for

which the least guidance is available (Brown, 1988a; Brown & Hershberger, 1991; Stasko, Badre

13

& Lewis, 1993; Naps & Bressler, 1998). This is because an algorithm is more than a collection

of variables. An algorithm represents a series of operations that affect the data stored in data

structures. The meaning and semantics of the operations can be quite subtle, yet understanding

those semantics is the crux of learning an algorithm. For example, consider the difference

between an initialization operation on a variable and a swap operation. Both involve placing a

value into a variable, but the swap operation involves a careful handling of the contents by using

a temporary variable or key information will be lost. Because the semantics of the operations

like these are not always readily apparent, deciding how best to depict and highlight those

operations using graphics is the challenge the animation designer must face.

2.2.3. WHY STUDY ALGORITHM ANIMATION?

Computer science students generally find algorithm analysis and design a most

challenging subject. It is easy to understand the difficulty. Algorithms manipulate abstract data

structures (a tough subject in and of itself) whose contents change over time. The algorithm's

behavior changes depending on the input values. Hence, algorithms are both abstract and

dynamic entities, but the methods used to teach them (textual descriptions and diagrams) are

concrete and static, not always well suited to describing dynamic processes. A survey of

teaching methods (Badre, Beranek, Morris & Stasko, 1991) shows that over 80% of instructors

used textbooks, diagrams and lectures to teach about algorithms. This means that teaching

students how to comprehend and analyze the behavior of fundamental computer science

algorithms depends mainly on an instructor's ability to impart an understanding of the dynamics

involved using lectures and static media. For this reason, other methods have been sought to

help students learn, beginning with the unveiling of the movie "Sorting out Sorting" at the 1981

ACM SIGGRAPH conference which demonstrated the use of graphics and animation to illustrate

14

algorithm behavior. This 30-minute film took 3 years to create and used a series of color-

enhanced screen captures and explanatory narrative to 'teach' nine sorting methods. The film

culminated in a 'grand race,' where 2500 data items were depicted simultaneously in a separate

window running each algorithm to show the performance difference in real time (see Figure 2.1).

Line sir Imvrtiun
•■■■ !>';■•,-.*"'■".•; ■•''■: ■-

?/:i* •/.,■/, ;:"« y,~ ,;•

Hubhlesorl Straight Selection

Hi nary Insertion Shaken-art In.**.* Selection

'. '-- * " ..-, ."• .■.'"<' .:. L, <r.

/ '"' -> .'v ■ " „V '■■ ''-;"
:" . ■ ■" ' i ■ ,\', '-■' ,r' "■' "' ■"

She U sort

»yf/-.■■■' ■

Ouickson lie assort
W\$-\ •■'■

■'•■■'''.•f. 'A1 : ",-■";.
■V-'V'-i^V^i

Figure 2.1. Screen Capture From the Film Sorting Out Sorting (Baecker, 1981)

15

This movie marked the beginning of research on algorithm animation and in the years since,

numerous systems have been developed to facilitate learning in a wide variety of settings, such

as:

• to supplement lectures on algorithms in electronic classrooms (Brown, 1988a; Stasko,

1997; Gurka & Citrin, 1996; Bazik, Tamassia, Reiss & Van Dam, 1997);

• to illustrate the basic operations of abstract data types in a computer science laboratory

(Naps, 1990; Pierson & Rodger, 1998);

• to facilitate debugging logic problems (Baecker, DiGiano & Marcus, 1997);

• to help programmers understand and find performance bottlenecks in parallel programs

(Heath & Etheridge, 1991; Kraemer & Stasko, 1993);

• to depict operating system functions (Hartley, 1994); and

• to trace the parsing of natural language processing routines (Rogers, Gaizauskas,

Humphreys & Cunningham, 1997).

The general expectation with algorithm animation as an instructional aid is that providing

concrete depictions should improve comprehension and facilitate learning. However, relatively

little empirical evaluation of algorithm animation systems has been conducted to substantiate this

belief.

2.2.4. AN OVERVIEW OF EXISTING ALGORITHM ANIMATION SYSTEMS

One of the first algorithm animation systems was Balsa (Figure 2.2) which was widely

used in Computer Science classrooms at Brown University (Brown & Sedgewick, 1985). With

the benefit of hindsight, a significant shortcoming with Balsa was that the animations were not

informative enough—they merely illustrated 'interesting events' identified by the

animator/instructor in the execution of the algorithm. The animations typically showed large

16

numbers of data elements represented as simple geometric elements being rearranged spatially on

a display. For instance, the input to a sorting algorithm was shown as a large number of dots,

representing the input values to be sorted, strewn randomly on the screen. As the algorithm

executed, these dots slowly rearranged themselves into a diagonal line. Such displays, without

additional pictorial and verbal explanations, impede comprehension by making it hard for the

learner to construct referential and representational connections in their mental models

(Narayanan & Hegarty, 1998). Balsa was used in classrooms where, presumably, the instructor

provided the needed explanations. We are not aware of any literature that presents evaluation of

the system or assessment of its effect on student learning. Nevertheless, Balsa marked the

beginning of the first significant research program on algorithm animation, and a variety of

successor systems have followed (Price et al., 1993; Stasko et al., 1998). A selection of such

systems are described briefly in the pages that follow.

Figure 2.2. Balsa-ll Screens Views of the Quicksort and SelectionSort Algorithms (Brown, 1988a)

17

Zeus (Brown, 1991): Written in Modula-3, Zeus was the first animation system that supported

use of color, sound, synchronized views, and introduced 3D graphics. It was designed for multi-

threaded, multi-processor environments which allowed depiction of parallel programs. While it

was compiled for several computing platforms, Zeus did not see widespread use outside of the

laboratory. However, several weeklong programming events were conducted at the DEC

Systems Research Center to demonstrate the flexibility and variety of Zeus animations. The

screen capture in Figure 2.3 is copied from Brown (1994).

mm m<-:rm-'-mp-*t<m&i&mi-

T7 li *■ II Tniöitl'l?'•*. :

m\ WmM

ij^jig ft^:Ft;ain:,tJ..t,^,f.l|.-|

1

■ I II
■■■ ■■ ■ ■'

i

ö*.fö

'iiwt?^.>^:*

; • n.»t\f4*im-

T "T'»U» 3fcp»> ' Midi Ji*_.'....'J_i I
I Hn^n^t Sat1 • ->nvrf -< ' • > i.i

Figure 2.3. Zeus Screen View of the BinPacking Algorithm

18

GAIGS (Naps, 1990): Developed with a focus on data structures rather than algorithm

animation, GAIGS was one of the first systems to support multiple snapshot views of algorithms.

In effect, this system used 'before' and 'after' pictures of algorithms in progress and relied on

the user's ability to mentally animate the changes between each frame. Some research suggests

this is a powerful approach because it forces mental animation (Hegarty, 1992) by not providing

explicit animation for every step. WebGaigs (Naps & Bressler, 1998) extended this approach to

allow delivery of snapshot animations over the Internet. A screen capture of the WebGaigs

system is shown in Figure 2.4 and was adopted from Naps & Bressler (1998).

a-*.-*

attMMkiü I* fcMfc"'

&3SH

8***"*

SB».

w«f

iWt*»

•■A»* iw-'tltf&i* £*■■• ■«:'■• --4 '&$*;>:■ ■

mms\
mtel*

Figure 2.4. WebGaigs Screen View Showing Multiple Snapshots of the Quicksort Algorithm

19

Tango (Stasko, 1990): Tango enhanced Balsa's 'interesting event' approach, adding several

refinements and porting the capabilities to the Unix platform. XTango (Stasko, 1992) extended

those capabilities to X-Windows, and Samba and Polka (Stasko, 1997) were written to facilitate

animation playback. There is currently a version for Microsoft Windows also. Tango provided a

set of commands that let the author specify and manipulate the shape, size, location, and color of

various graphical objects according to how the animation author wanted the operations of the

algorithm to appear. The collection of Tango commands formed an 'animation script' that could

be played over and over to illustrate the operation of the algorithm on a specific set of data. The

script could be generated by a word processor or by carefully inserting print statements into

working code representing the 'interesting events' that were selected for highlighting and

illustration. Tango employed a path-transition paradigm to yield smooth movement of the

graphical objects rather than the strobe-like transitions of earlier systems. The smooth

movement provided a pleasing and easy to follow animation for the student. Most current

experimental studies of algorithm animations have been conducted using Tango and its

successors. The screen capture of XTango shown in Figure 2.5 was copied from Lawrence et

al, 1994).

20

XTANGO

on ._ Now the edges «re sorted b« length.
~Z9" Select the next shortest edge.

Check for cycle.
If no cycle Is created, add edge to spanning tree.

F D 33
C F 33
B C 35
D E 36
D ft 42
F E 43
ft E 46
B ft 49

STOP

unpaose pßftBWS mode debug refresh quit

Figure 2.5. XTango Screen View of Kruskal's Algorithm

21

Lambada (Astrachan et al., 1996) and JAWÄA (Pierson & Rodger, 1998): Both of these systems

were built to enhance and extend the Tango framework. Like Tango, both systems make use of a

graphics engine that uses a separate script file which contains commands that create and

manipulate visual objects to produce the desired animation. This 'interesting event' approach

allows scripts to be created from either a word processor or by inserting print statements into a

working program. Unlike Tango, both Lambada and JAWAA were written in Java to allow

delivery over the Internet. JAWAA provided a number of additional commands that facilitate

creation and manipulation of complex data structures. Where Tango authors had to build complex

data structures element by element, JAWAA authors could employ high-level commands to

construct arrays, trees, graphs, stacks and other complex data structures with a single command.

Figure 2.6 was taken from http://www.cs.duke.edu/~wcp/JAWAA.html.

Preorder: 1 2 3 4 8

Postorder: 2 7

>5

Stack:

Start i Stop! jÜnpausejj Step!

Figure 2.6. JAWAA Screen View Showing the Depth-first Search Algorithm

22

SWAN (Shaffer et al., 1996): Developed to facilitate automatic depiction of the data structures

and basic execution processes of C/C++ programs and written for the MS-DOS environment.

Swan views a data structure as a graph or collection of graphs including directed and undirected

graphs, trees, lists and even arrays. Swan animators annotate C/C++ source code which is then

compiled and produces a visual depiction of the underlying data structures of the program. The

layout of the graphical components is handled automatically. The Swan interface allows the

annotator to place terse explanations in a small window at the bottom of the screen to help explain

the status of the execution. A sample screen view of the Swan system in action is shown in Figure

2.7 and was captured from a running version of the software that was downloaded from

http ://geosim. es .vt.edu/Swan/Swan .html.

Figure 2.7. Swan Screen View Showing a Network Flow Problem

23

C Animator (Sangwan & Korsh, 1998): Developed as a tool to allow visualization without

annotating source code, this system provides an interesting bridge between visual program

development systems and algorithm animation systems. The authors also describe their system

as an excellent debugging tool. The system uses a set of specialized header files that recognize

selected C/C++ variable declarations, and invokes special compiler-level calls to create

visualizations of those objects automatically. Students or instructors simply make syntactic

changes to data type declarations to a form that their compiler recognizes and the resulting

animations are generated automatically. When executed, the program creates a set of tiled panes,

containing the source code, global and local variables, function parameters, a call stack, current

operations, and a visual representation of the data structure being manipulated. Figure 2.8 shows

a screen view of these panes during the execution of an insert operation on an AVL tree.

tJOft in—rt—l
■mmmm?mm^mm&%£$^M&i Wzic

/♦ FUNCTICN : void inMrtovl («hotrw
/* MKUMCIirs
/* kvyvnJur ~ teij to b» imirivd into
/* ot - podnivr to on ovl tre* into u
/* ccsCKirrioH :
/A*»««*«*****»********«t********ft«*«*«««
«.id In» tovl<i*iiit«vtr k*y«tilL*r, binary

biMirytrc«f*tr P* PrKlP» lost, prodlost
int fofid;

»Hrcn(l'eyiwli*.*pt.ty,&prHip,M<Bt,Sp
If Ofo«*» <

rrrotUKxMWuvnluf.Cp);
insH-tnoo>(l«*|«rtM. p. prwlp, ot):

if (pr»«*p->b<ile>™c» » o;
if (fefyvalu* •« lost-»k«j)

if (lost-»baiancr — 0) {
lasl-»bolonc* » -I;
rc**tportnt>ol ontei (kcyvoluo,

il» if (1nt->tnlonc* •» »1|
iost->talonce » 0;
rrsrtpothbolDnces(twyvfllut.

I
*>» I

q * lnst->-leftptr;
tf (ktvmlm « q-»!«»)

ll(l«nj«aliw.(t«t.p);
•1«

lr(k«irmlur,tlalt,Cq.p);
1ost-»4xilflnr» ■» 0;
If (prcdlast — MUU)

•pt > last;
el» if (klywolut i (rrdltxt

pcWinit—l.flptr - l«t;
•1»

_l

S^ JS

/\ /\
2 IS 21 41

A
U 30

M

»10

IM!

\ \
•2 iswro

H B
items: i™«-»«-i

JH",n|jp"^.lj|c Slmtl« Su>[Jiltot|lj[lMt)| |»tui«

«■«UrtL,
IM»

I i««l IB

IS

nmmaau im»-i«.i

'MSSSWL

Figure 2.8. The C Code Animator Application Showing an AVL Tree

24

Jeliot (Lahtinen et al., 1998): Jeliot was developed as a system to facilitate visualization of Java-

based source code over the Internet. Animating a program with Jeliot involves a series of steps.

First, the code panel is loaded with the program to be visualized. The program is a subset of the

Java language, in that only a certain set of variable types are recognized by their preprocessor for

animation. Once the source code is loaded, three panes appear: a controller, a stage manager, and

the animation stage. The controller provides the user with an interface to characterize and

manipulate the animation. The stage manager provides controls for the student to assign shapes,

colors, layouts and locations to as many variables as desired. The stage is where the animated

objects appear as the program executes. Figure 2.9 shows each of these panes in a screen capture

of the system during execution of the selection sort algorithm, taken from

http://verosaari.cs.helsinki.fi:8807/Jeliot/.

Jdioi - faleractive algoijihm animator

nipat Java applet Appfet. ji

putfc da« bubble extends Applet {
pubic void statfH

intQ theAnay - new rtjl 0):
irtk;
wt\:

fof[k = 0;k<10;k = k+l)
theAnajifcl = [ri] |Msm.?andonr4l" 1OOQ;

torlk = 10;k>0;k = k-l)
tafi = 1;j<k;j = j*l)

if [theAirayfi -1] > tVieAirayl {
temp ■ theAnayO ■ 1];
theAnajiD-11-theAirayÜ];
theAnayGl ■ temp: J

ISS-;.»,, i Rp-Eil

;*6
<

MO
t; 1 YES| L 1

theAiray

N4|57i59tG3l90l88lS7|63lG9l52l

temp j k
M2 vnrw\

' S«up" '| ■■' 'Hi ' "| '■ ' '. Cfcii" :■■'"-' |

tjäM rJavaÄppWWWow"

Figure 2.9. The Jeliot Framework Showing the SelectionSort Algorithm

25

JCAT (Brown & Najork, 1996): JCAT (Java-based Collaborative Active Textbooks) is an

environment that supports Web-based animations that can be jointly viewed by multiple users.

JCAT employs a form of interesting event scripting. Figure 2.10 shows a screen capture of the

JCAT implementation of the quicksort algorithm, taken from

http://www.research.digital.com/SRC/JCAT.

JCAT

RESUME | [[ST|F] ABORT

<* Selection Sort

'■<* Quicksort

» Heapsort

Number of «laments: 25

excbange(2.4) ä
exchange{4,8)
exchange(9.16j
endPossß
startPassfl
exchanged ,19)
exchange^,2)

-i
il J

r _r-

4ff ,D-'

Figure 2.10. The JCAT Environment Showing the Quicksort Algorithm

26

AACE (Gloor, 1992): Developed in HyperCard and currently distributed as a CDROM

supplement to a textbook (from MIT Press), AACE (Animated Algorithms for Computer Science

Education) was the first commercially marketed algorithm animation system. It was also one of

the first systems that used real world analogies to help describe the algorithm. AACE supported

interactive animations and employed multimedia presentation techniques that included multiple

windows to describe the animation, such as a code window, and a window with explanatory text.

Animations could not be user-developed however. Figure 2.11 shows a screen capture of the

AACE system showing the bucket sort algorithm during execution, from Gloor (1992).

Abort

S.0.S Ä
efforts

Reset
Sort

II
Pause Step

►
Play

Select Balls

Distribute

Sort

Combine

O

O

O

Bucket Sort

BUCKET-SORT (A)
Yi <- T»ngth[Aj
for i <- 1 1o ft

do insert A[l] into list BQnA[i]
far i <- 0 to n-t

do sort list Bfi] with insertion sort
concatMnti» th« lists B[0|,B[1],...,B!n-1] in order

o
o OO

o

Figure 2.11. The AACE Framework Showing the Bucket Sort Algorithm

27

AlgoNet (Recker et al., 1995): Written in Visual Basic to explore how students interact with

cognitive media types, this system never saw widespread classroom use, though some empirical

usability studies with students have been conducted. AlgoNet contained lessons dealing with

shortest path algorithms and included both real world case studies and examples to help introduce

and reinforce subject matter. AlgoNet did not emphasize nor make heavy use of animations. The

AlgoNet framework was not intended to be a general purpose algorithm animation system but

rather a research framework to study use of a variety of media in cognitively relevant forms to help

meet user needs and learning objectives. Figure 2.12 shows a screen capture of the AlgoNet

system, taken from http://c2000.gatech.edu^rothert/research/projects/AlgoNet/start.html.

nnmsm
■'.<€■ «T:.U..iä <£.':■ 4ä: e* tf I!

Bock Eoiward Reload Home Search Glide Print . Secuity / Stop

Shortest Path Algorithm: Example

Consider the problem of finding the best route (here, fewest stops)
between two cities on a map of airline routes. From the map we see
that the best way to get from Los Angeles to New York is to stop in
Denver and Atlanta.

This is a common
application of a
weighted graph or
directed graph

In practical
applications, we often
deal with graphs in
which V may contain
several hundred
vertices. In graphs this
sire, it is impossible to
scan the graph in
order to find the
shortest path.

This module presents Dijkstra's algorithm for finding shortest paths.

DEFINITION EXAMPLE KEUGOCODE »llllsaTIOH

What's a path?

Figure 2.12. AlgoNet Screen View

28

There are several other user-developed algorithm animation systems. For example, the

Sun Web site includes a entertaining page showing various animated sorting algorithms

(http://www.sun.com). Ecks has developed an excellent Java-based instructional tool called

XSortLab that animates a variety of sorting algorithms, shown in Figure 2.13 and available at

http://math.hws.edu/eck/csl24/labs98/lab9/xSortLab.html. This system includes two levels of

explanatory statements that accompany a very intuitive graphical depiction of the algorithms.

Another author, Peter Brummund, created a similar tool called the SortAnimator, shown in Figure

2.14 and available at http://www.cs.hope.edu/~alganim/animator/SortWindow.html. This tool

forgoes textual explanations but includes a variety of controls for the student to tailor the

presentation and playback of a number of sort algorithms. The animation is also accompanied by

the algorithm code, highlighting the line being executed.

Apply "QuickSortStep" to items 1 through 8

The range of possible final positions for item 1 is boxed

Figure 2.13. The XSortLab Application Showing the Quicksort Algorithm

Background Foregrouid

29

Speed-3

HF" (Random

void Mrt^nuim»jrQ.rt tow, tnthidhH
M bottom, top.pival:

llhijh>lo»|(
pivol - nomanarfhioht
tonom-row-1:

'top»hioh;

whte KnumaoajMiottoml« pivot) U. (bottom < nunwiayfenflttilt
wMe Snumwaif^opl > pwol) U (top > 0{t
fEboHom>-top)bMak;
RWtp ■ numatariboHom);
nunwayßot^l-numartojßopl;

nuitarrorflopl-tamB:

)
temp ■ runwajfbottom]:

'. num»r*rfbomW)i = numairii(Not'l; '
numan4((high] * temp;
sort (numatrv. low, bottontl]:
tot (nuMffay. boftomt-1, hiojit

U»tCor*ol AV»hn.

"| Insert £][Quick Sort

Figure 2.14. The Sort Animator Showing the Quicksort Algorithm

1'

There are a number of other algorithm animation systems that are discussed in the

literature but are not discussed above, such as the Algorithm Explorer (McWhirter 1996),

DRUIDS (Whale 1996), DynaLab (Birch et al., 1995) and others. There are several Web sites

devoted to serving as clearing houses to other algorithm animation implementations. Peter

Brummund maintains a Internet site with links to 43 sites that employ some form of algorithm

animation (at http://www.cs.hope.edu/~alganim/ccaa/ccaa.html). Another list maintained by

Hausner is at http://www.cs.princeton.edu/~ah/alganim, and yet another is at

http://www.cs.duke.edu/~jeffe/compgeom/demos.html.

When chronologically viewed, successor systems made enhancements and improvements to

earlier systems in several noteworthy areas:

• Code independence - Creating a set of language-independent commands to control the

animation, permitting instructors to create animations from a wider variety of source

programs.

• Internet delivery - Allowing wider dissemination and platform independence.

30

• Presentation techniques (such as use of color, sound, and smooth animation) - Improving

the aesthetics of the animations.

• Integration of textual explanations - Providing terse but useful descriptions of the events

being depicted.

• Multiple windows - Allowing multiple views of one algorithm, or comparative views of

similar algorithms.

Generally, the systems reported in the literature can be categorized into three types, listed

below.

• Language Supersets (Those that provide code libraries that enhance current languages).

For example, Algorithm Explorer uses specific data structure declarations to drive

compiler-recognized animation sequences. These libraries modify language compilers

and extend their capabilities to support animation. They generally recognize particular

data structures and invoke procedures to graphically illustrate them as the program

executes. These are the easiest for students to work with, in theory, because the student

does not need to worry about the mechanics of illustrating the animation—the compiler

automatically generates the visual components. The disadvantages are that the systems

can only recognize and illustrate a fairly restrictive set of data structures, provide fairly

little supporting media, are limited in the manner in which the animations can be

presented, and are available for specific platforms and languages. The systems reported

above that fall into this general categorization include Jeliot, Algorithm Explorer, C

Code Animator, Druids, and DynaLab.

• Interesting Event Systems (Those that work with event scripts). Tango, for example,

works with graphic commands generated as output from existing programs or authored

31

from a word processor to create and manipulate animation objects. These systems provide

greater control over the design and presentation of the animation and do not restrict the

animator to any specific language. The biggest disadvantage is the learning curve imposed

on the animation designer to leam the manipulation commands and ensure the 'playback'

environment is present for the student to view the resulting animations. The systems

reported in the previous section that make use of the interesting event/scripting paradigm

are JCAT, XTango, JAWAA, and Lambada. For example, the diagram in Figure 2.15 is

created from the script depicted next to it:

circle cl 30 20 60 blue red
textt2 42 55 "JAWAA" black
moveRelative cl 60 0 true
moveRelative cl 0 50 true
moveRelative t2 100 100 true
moveRelative cl -60 0 true
moveRelative cl 0 -50 true
moveRelative t2 -100 -100 true

array A 100 40 3 "hello" "your" "world" horz black red
changeParam A[2] bkgrd white
changeParam A[2] bkgrd red
changeParam A[l] bkgrd white
changeParam A[l] text "my"
changeParam A[l] bkgrd red
changeParam A[0] bkgrd white

moveRelative A[2] 60 0 true
moveRelative A[l] 30 0 true

rectangle rl 100 100 20 20 black blue
rectangle r2 50 100 20 20 black green
rectangle r3 100 150 20 20 black red

groupObject group 1 5 cl t2 rl r2 r3
moveRelative group 1 200 200 true

groupObject group2 3 rl r2 r3
moveRelative group2 -200 -200 true

[gigtj] 'Stop] i'-P«utt" j

JLE

Figure 2.15. An Example of an Interesting Event Script and the Animation it Creates

Dedicated Systems (Those animations created without provisions for instructors to

author new sequences). For example, AlgoNet, AACE, and XSortLab are packaged

learning environments/applications that cannot be extended by end-users. They

32

require extensive coding to implement animation sequences, but allow much richer

and interactive tutorials. Other systems include SWAN, DRUIDS, and GAIGS.

These provide the greatest control of media presentation to the learner and are

relatively easy for the student to use, but these also require a tremendous investment

by the author/animator in time and effort.

The animation systems that have enjoyed the widest use and longest 'shelf life' have

been the ones that are most flexible and accommodate the widest variety of animations. Tango

and its clones and successors seem to be the most popular animation environments currently

available. Built on the 'interesting event' paradigm, the Tango graphic command set allows a

wide variety of animation styles. Scripts can be generated by inserting output statements into a

fully functioning program, or can be produced from a word processor. This powerful

arrangement facilitates a number of possible animation styles, and has even been used by

students where they assume the role of the instructor and create an animation of their own to

depict their visualization of various algorithms (Stasko, 1997).

Most of the empirical research so far has been conducted using the interesting event

systems, which seem to provide greater user control over creation and modification of animation

scripts, as will be seen in the following section.

2.2.5. EMPIRICAL STUDIES OF ALGORITHM ANIMATION EFFECTIVENESS

Guided mainly by intuition, most of the systems discussed in the previous section were

developed in the belief that algorithm animations would serve as successful tools for students to

learn about algorithms (Pierson & Roger, 1998; Sangwan & Korsh, 1998; Shaffer et al., 1996;

Whale, 1996; Stasko & Patterson, 1992; Stasko, 1997). This belief has a strong intuitive basis.

Students have always had a relatively difficult time understanding abstract mathematical notions,

33

especially when these included dynamics of how algorithms manipulate data, so concretizing

these notions graphically and animating these to illustrate the dynamic behavior ought to improve

learning. So while it is certainly possible to learn about an algorithm without using animation, it

seems almost obvious that a student could learn faster and more thoroughly with one.

Subjective studies are almost unanimous in their praise for animated algorithms.

Students, exposed to animations, have reported that they felt the animations assisted them in

understanding the algorithm (Stasko et al., 1993; Naps, 1990; Naps & Bressler, 1998; Gloor,

1992; Stasko, 1997; Gurka & Citrin, 1996). Instructors echo similar positive comments and

many embrace their use as an integral part of their teaching method (Naps & Bressler, 1998;

Gurka & Citrin, 1996; Stasko, 1997; Brown, 1988c; Eck, 1998). Unfortunately, the elation has

been dampened for students and instructors when formal empirical research about the benefits of

animation in computer science and elsewhere began to show disappointing results (Reiber et al.,

1990; Badre et al., 1991; Palmiter & Elkerton, 1991; Stasko et al., 1993; Byrne et al., 1996).

Badre et al. (1991) conducted a faculty survey to identify algorithm teaching practices

and conducted an observational study of two groups of students working with a shell sort

algorithm. One group saw the animation while the other did not. They found that student

performance in the animation condition varied with individual background and that good

students did well regardless of whether they used the animation or not.

Lawrence (1993) conducted a series of experiments to evaluate student preferences and

performance using various animation presentation techniques. Groups viewed animations with

slightly varied components, and both subjective and empirical results were gathered. Some of

the subjective statements indicated, for example, user preferences for vertical over horizontal

bars, for bars over dots, for solid images rather than hollow ones, and so on. She conducted

several experiments comparing specific animation conditions, finding that groups viewing

34

animations with color cues performed worse than groups viewing monochrome animations, and

that groups viewing animations that included 'conceptual labels' (a terse one line explanation of

what the animation was doing) performed significantly better than groups viewing animations

without such explanatory statements. Finally, she reported a statistically significant benefit to

students who were allowed to interact with the animation system by entering their own data sets

as input to algorithms over the group that passively watched already prepared animations. The

results supported her hypotheses for the positive effects of conceptual labeling and for student

interaction, but found the negative effects of using color in animation somewhat surprising,

leading her to recommend sparse and judicious use of color to highlight well-labeled events and

to avoid arbitrary coloring schemes. Her results are insightful and provide guidelines for

algorithm designers to consider, but do not compare the effectiveness of learning algorithms by

animation compared to other traditional teaching methods.

Another study was conducted by Stasko, Badre and Lewis (1993) which used an

interactive animation to teach a priority queue algorithm to computer science graduate students

under text-only and text-and-animation conditions. The study hypothesized that animation would

aid procedural understanding but found that the animation group did not perform any better than

the control group on questions testing procedural knowledge. They found the effects of the

animation was not as strong as expected ("non-significant trend favoring the animation group").

They attribute the lack of performance of the animation group to a property of most

visualizations, which is that an animation typically represents an expert's understanding of the

algorithm, not a novice's. They state,

"For a student to benefit from the animation, the student must understand both the

mapping [from the algorithm to the graphics] and the underlying algorithm on which it is

35

based.. .Students just learning about an algorithm do not have a foundation of

understanding upon which to construct the visualization mapping." (Stasko et al., 1993, p65)

Lawrence, Badre & Stasko (1994) conducted a detailed 2X2 study of students learning

about an algorithm under lecture-only, lecture-and-laboratory, lecture-and-animation, and

lecture-animation-laboratory conditions. In the laboratory condition, students either participated

passively by watching, or actively by specifying different inputs to the algorithm. They found no

significant difference between lecture-only and lecture-and-animation conditions, but they did

find a significant (p<.05) effect in the active lab conditions on tests measuring conceptual

knowledge.

Byrne, Catrambone & Stasko (1996) also found limited learning effects in

undergraduates using interactive animation. Their study examined the effects of animation and

making predictions. In learning new algorithms, some students viewed animations and some

were prompted to make predictions about an algorithm's operation on novel data sets. One

experiment used novice students studying the relatively simple depth-first search algorithm, and

the other used expert students with a more challenging binomial heap algorithm. In both cases

they used a 2 X 2 design with animation/no-animation and prediction/no-prediction conditions.

They found that the ability to make, test and receive feedback on predictions contributed to

learning. But animations did not seem to confer any significant advantage over paper-and-pencil

predictions. Thus, their conclusion is that animations, as traditionally conceived, may have less

effect on learning than generally assumed. They conjecture that benefits from animations may

accrue only if the learner has the right amount of prior knowledge, not so much that the

information provided by the animation is redundant, but not so little that the information is

difficult to understand and integrate.

36

Hundhausen (1996) provides an excellent summary of the results of 29 empirical studies

pertaining to the comprehension efficacy of algorithm animations and more generally, software

visualization. Of the 29 experiments, only the three reported by Lawrence (1993) generated

statistically significant results, and these dealt with design issues rather than learning

effectiveness over traditional teaching methods. He observes, succinctly summarizing the

paradox that our research will address:

"The results have been mixed, with a majority of the studies failing to obtain the

statistically significant result for which their authors had hoped. In stark contrast,

questionnaire and survey data have painted an overwhelmingly positive picture of

software visualization effectiveness; most people who use software visualizations seem to

think that it helps them." (Hundhausen, 1996, p22)

This intuitive belief in the benefit(s) of visualization is not borne out by empirical

studies. Therefore, our research has two thrusts: (1) to design better algorithm visualizations and

(2) to empirically and statistically demonstrate their effectiveness.

2.3. THE PROBLEM: MOVING FROM ANIMATION TO VISUALIZATION

Though research on designing and deploying algorithm animation spans over 15 years,

including dozens of experiments conducted to test whether animations lead to improved

understanding, all one can say about this accumulated evidence is that the results, at best, are

mixed. On one hand, subjective comments by students and instructors applaud the use of

animation as a teaching tool, citing it as enjoyable, entertaining, interesting, and even revealing.

On the other hand, the empirical evidence has been terribly disappointing in confirming the

effectiveness of algorithm animation as a teaching tool. The general conclusion that emerges is

that algorithm animation, as traditionally constructed and used, may not be as effective for

learning as had been expected. The mixed, disappointing results can lead one to abandon the

37

premise that animations are powerful vehicles for effectively conveying the dynamic operations

of algorithms on data structures. The following quote succinctly expresses the frustration felt by

researchers working in this area:

"Unfortunately, the viability of algorithm animations as instructional aids remains rooted

in intuition. No substantive empirical evidence has ever been presented to support these

claims." (Stasko, Badre & Lewis, 1993, p61).

Furthermore, the vast majority of current algorithm animation systems, with a few

exceptions, remain on the shelves as dust-gathering research prototypes, or made available over

the web for the curious to experiment with. Even in those few cases where algorithm animations

and animation building systems have been deployed in undergraduate classrooms, systematic

studies of their effectiveness to test whether these do indeed lead to improved understanding of

algorithms are yet to be conducted. There is also little research that can shed light on issues such

as whether combining animations with other kinds of explanations can improve learning, and if

so, what might the principles be for designing such explanations.

In the studies that failed to find significant benefits to using animations, the following

explanations seem plausible:

• There are no, or only limited, benefits using algorithm animation.

This is contrary to intuition and other positive results in non-algorithmic areas. Hence, if

we accept the premise that animations are indeed useful, then we must rethink the

process of algorithm animation design in order to harness its power to enhance learning.

Perhaps the results of earlier work were unsatisfactory not because of a flaw with

animation as a technique, but because of the approach used to convey the animations. As

stated earlier, perhaps the flaw in previous algorithm animation systems was not in the

38

use of animation, but in the design of the system employed to deliver the algorithm

animation to the student.

There are benefits to using algorithm animation but the measurements used in the studies are

not sensitive to them.

Many of the studies focused exclusively on student performance, but did not measure

other factors that animations might affect, such as speed of learning, student motivation,

student satisfaction, and long-term retention. Evidence of effectiveness in any of these

measures could present a valid argument for acceptance of algorithm animation systems.

However, our chief focus will be to measure student performance, and we will leave the

other metrics for future research. The experiments in Chapter 4 concentrate on

measuring student performance by comparing groups that interact with animated

algorithms and groups that learn algorithms using traditional teaching methods.

Something in the design of the experiment or animation prevented participants from

receiving the benefits.

It is quite possible that the experiments encountered factors, such as buggy software,

awkward user interface, inadequate or faulty hardware, and insufficiently developed

animations that led to less than satisfactory results and skewed the findings. For

example, some experimenters mentioned not properly isolating the independent variables

between the groups (Hundhausen, 1996), improper phrasing of questions (Byrne,

Catrambone & Stasko, 1996; Crosby & Stelovsky, 1995), and having questions that did

not match the learning material (Reed, 1985). One author stated his system was simply

too unstable to contemplate formal testing (Whale, 1996). These problems shaped our

efforts. However, one study mentioned a reason that falls within the scope of our

research: Byrne et al., (1996) suggested the animations used might not have been 'the

39

right ones,' that they may not have been properly designed. Since a 'bad' animation

could negatively affect results, we dedicated a portion our research on studying factors

and features that make a good animation. The experiments in Chapter 5 explore the

effectiveness of a variety of features and design approaches that give insight to future

researchers and developers concerning the design of better algorithm animations.

Before presenting the experiments, in the next chapter we will present and describe the

framework we developed to address these issues and concerns.

3. TOWARDS A FRAMEWORK FOR EFFECTIVE VISUALIZATION (OR

'WHAT WAS MISSING BEFORE')

This research is based on the hypothesis that animations are indeed powerful vehicles for

effectively conveying the dynamic behavior of algorithms, but that a rethinking of algorithm

animation design is required in order to harness its power to enhance learning. Research has

shown clearly that animation, by itself, is not enough. What is needed is a new framework that

leads to effective visualization. The Oxford English Dictonary (Simpson & Weiner, 1989)

defines visualization as "the power or process of forming a mental picture or vision of something

not actually present to the sight." Where animation is concerned with moving graphic objects to

create the illusion of motion, visualization involves use of animation and a host of other

techniques to create a clear mental image in the mind of the observer. Visualization then, is a

much richer and more involved process than merely watching an animation.

3.1. COMPONENTS OF THE FRAMEWORK

Our research explores the integration of previous work in algorithm animation systems

(e.g., Kehoe & Stasko, 1996; Recker, et al., 1995) with recent developments in the cognitive and

educational aspects of multimedia (e.g., Crosby & Stelovsky, 1995; Narayanan & Hegarty, 1998)

to produce a novel approach to designing algorithm visualizations to improve student knowledge

and comprehension. This approach is based on explicating learning objectives that drive a top-

down design process which carefully divides abstract concepts into discrete chunks for learning.

40

41

Unlike previous work, our model takes a user-centered ("what do we need to show") view rather

than a technology-centered ("what can we show") view, and employs hypermedia and

multimodal presentation techniques to improve learning effectiveness. We call the resulting

framework, containing text, diagrams, audio as well as animations, a hypermedia visualization.

Under this new framework, an algorithm visualization is more than a mere animation. It

describes a scaffolded, apprenticeship-oriented environment (Soloway et al, 1996; Guzdial &

Kehoe, 1998) that elicits active student participation using a carefully orchestrated presentation

of information in various media (such as animations, text, static diagrams, aural narratives, etc.)

with appropriate temporal, spatial and hyperlink connections to semantically related components.

The foundation of this new framework integrates ideas encountered in related work with original

concepts developed in our research.

3.1.1. OBJECTIVE-BASED DESIGN

Our framework employs top down design techniques that are based on learning

objectives. As noted by Stasko, Badre and Lewis (1993) and Reed (1985), learning objectives

are critical to educational success. The objectives determine what the student needs to know and

to what depth (Bloom, 1956), and ultimately drive the content of the views, the animations, the

interactions, and the questions to ask to measure understanding. Hundhausen (1996) stated:

"the lack of a well-defined task objective places learners in an unrealistic (and potentially

disconcerting) situation in which they are to explore an animation without a clear idea of

what they are supposed to get out of it. As learners engage in an aimless process of

discovery learning, there is no guarantee that they will stumble upon the insights into

algorithmic behavior that could help them on the upcoming test. Thus the lack of a

concrete objective may serve to rob an animation learning session of its putative

benefits." (Hundhausen, 1996, pl8)

42

Using Bloom's taxonomy of learning (see Chapter 2.1.2), an example of application-level

learning objectives for the insertion sort algorithm might include:

• Main Learning Objective

• Demonstrate understanding of the insertion sort algorithm to include its purpose, key

steps, data structure manipulations and terminating condition(s) as applied to various

sorting problems

• Sub-objectives

• Express the insertion sort algorithm in high level terms, such as pseudocode or

english

• Describe the overall strategy insertion sort uses to sort data

• Explain the purpose of the outer loop of the insertion sort algorithm

• Identify the variables that control the outer and inner loops of the insertion sort

algorithm

• Explain the purpose of the inner loop of the insertion sort algorithm

• Describe how a single element is placed into proper sequence

• Explain the conditions that result in insertion sort terminating successfully

• Given any set of input, trace the execution of the steps the insertion sort algorithm

would follow

Objectives stated in this way give direction to the learner and the designer. For the designer, they

are the foundation of the various visualization development tasks or steps (Hundhausen, 1996),

including identifying the interesting events that the animation should illustrate (Brown, 1988a;

Stasko, 1990) and providing an outline of the supporting materials and techniques (Lawrence,

1993; Pane, et al., 1996) that should be used. For the student, clearly stated objectives provide

focus, purpose and direction to learning.

43

3.1.2. MULTIMODAL PRESENTATIONS

A unique aspect of our framework is that the focus is shifted—it is not on the animation

itself, but on providing relevant and sufficient information in appropriate media (Rappin et al,

1997) to support achieving the learning objectives. Other research discussed the importance of

collocating graphics with textual descriptions (Stasko, Badre & Lewis, 1993; Mayer, 1989;

Lawrence, 1993), and of appropriate use of audio cues and narratives (Brown & Hershberger,

1991; Mayer & Anderson, 1991; Bagui, 1998; Hundhausen 1996; Mayer & Moreno, 1998). Our

framework involves embedding animations within a hypermedia visualization, along with textual

descriptions, audio and diagrams.

An original feature is the introduction of different forms of text, such as:

• static descriptions- passages that are presented in panels that remain visible to the user

and do not change, such as introductions, definitions and pseudocode;

• animated text- passages in which lines are highlighted in synchronization with other

screen objects;

• contextual explanations- text that is provided in response to specific conditions

determined by the state of the system.

Another capability that is not unique to our framework but bears brief explanation is the use

of multiple forms of audio to enhance the hypermedia experience, including:

• sound cues- audio 'bells' or 'buzzers' that signal selected conditions, such as the

completion of a loop or invoking a swap operation;

• redundant narrative- an audio segment that mirrors text already visible to the user.

Audio used in this way employs the dual-coding theory (Paivio, 1986) and is thought by

some to help reduce cognitive load. It also allows the user to visually roam to view other

parts of the screen since the ears are receiving the words in place of the eyes;

44

• contextual cues- audio segments that direct user attention to specific features or

interactions that should be explored further. This provides a form of scaffolding by

providing the user with prompts and hints that are not directly related to the content of

the animation, but can significantly deepen the learning experience by highlighting

features that could be very useful and educational to the student.

3.1.3. BRIDGING ANALOGIES

Another unique approach embraced by our framework is the use of real world analogies,

cases and examples to introduce and illustrate key concepts. An analogy is a learning device in

which knowledge about entities in a well-known domain (the source) is mapped into another

lesser-known domain (the target). At the highest level, students are introduced to the algorithm's

basic operations using animated real world analogies, and are provided with a bridge between the

analogy and the abstract components of the algorithm as well as the concrete graphical

representations used to depict the algorithm in later animations. This approach draws from the

observations that students tend to employ analogies in describing how algorithms operate

(Douglas, Hundhausen & McKeown, 1995; Stasko, 1997), and that analogies can serve to

provide a form of scaffolding (Hmelo & Guzdial, 1996) for subsequent learning. Related

research (Kolodner, 1993) suggests that using analogies, cases and examples to introduce and

teach complex physical systems is crucial to building mental models because learners can draw

from similar principles extracted from overlapping experiences. Analogy allows the application

of preexisting conceptual structure to new problems and domains, and hence supports the rapid

learning of new systems. Of all the learning processes, analogy is the only one that offers a

mechanism for the acquisition of substantial knowledge structures in a brief span of learning

(Gentner, 1989; Brophy & Schwartz, 1998). In our framework, the conceptual gaps between the

45

analogy, the abstract components of the algorithm and the concrete graphical representations

used in the animation are bridged using explanatory text to help build the necessary referential

connections (Mayer & Sims, 1994; Narayanan & Hegarty, 1998) for better comprehension.

These analogies set the stage for subsequent detailed learning, and may improve long term

retention (Gentner, 1989).

We have identified three aspects of real world examples that characterize the analogies we

used to illustrate or introduce algorithms at the conceptual level:

• Interactivity- This refers to the level of activity required by the user to receive the

analogy such as passively-viewed static text and diagrams, a paced animation (where the

user controls the playback tempo of an animation sequence), a simulation (where the

user inputs values into a simulation program that processes and reports results), or a

game (where the user competitively interacts with the program). We implemented

examples that involved each of these various levels of user interactivity. At the simplest

level, the bubble sort analogy simply provided a real world example of bubbles that rise

in a flask of water. The simplest analogy provides no more than an example for the user

to associate the name of the algorithm to its most basic behavior. Another level allowed

the user to view an animated, user-paced example. The most complex were the analogies

that were interactive, almost approaching a simulation for the user to explore. For

example, the Merge example showed the student, using two stacks of cards, how the

merge operation worked, then allowed the student to try merging the cards in a race

against time. In the Shortest Path analogy, students were shown how the algorithm

worked by testing various paths until the lowest fare was determined, then randomly

changed the fares and let the student 'try his hand' against the analogy by clicking on

cities that would be on the shortest path.

46

• Fidelity- This refers to the similarity of the mapping of attributes and relations between

the source and target domains. A good analogy should closely parallel the central

properties of the algorithm. If the analogy is too 'different', then it stands a very good

chance of confusing the student, or imposes an excessive cognitive load in trying to

bridge the components of the analogy with the algorithm, defeating the purpose of using

an analogy. Gentner (1989) identifies several levels of similarity: literal similarity

(where the attribute and relational mappings are one-to-one), mere appearance (where the

attributes match but the relations do not); abstraction (where attributes don't match but

the relations do); and anomaly (where nothing maps). Using these terms, our work deals

with analogies with literal similarity and mere appearance to the algorithms in our

system.

• Realism- This refers to how common the chosen example might be. Analogies that

bring to mind common, every-day activities or processes are more likely to lead to better

comprehension and long-term retention. Ideally, the example should represent an event

or situation that everybody has witnessed or experienced. The more a student can relate

to the analogy, the richer the content the analogy brings to the learning process.

While we look optimistically to the use of analogies and examples to introduce and illustrate the

algorithms to students, we recognize that their use can also present problems. Good analogies

take effort and thought by the designer to create. Analogies take thought for the student to

understand and mental effort to build the referential connections between domains. Analogies

draw from human experience which is different for each individual, so what constitutes a good

algorithm for some might be quite confusing to another. Furthermore, there will certainly be

algorithms for which no commonly available example exists.

47

3.1.4. VIEWS AT MULTIPLE LEVELS

Our framework incorporates the ability to view algorithm behavior in various levels of

detail. Studies indicate improved results when multiple views are employed in large problems

(Muthukumarasamy & Stasko, 1995; Robertson, 1991), and scaffolding theorists support the idea

of providing students with levels of detail (Guzdial & Kehoe, 1998). At the highest level of our

framework, a 'Conceptual View' introduces the algorithm in general terms accompanied by a

real world analogy. Next, a "Detailed View" focuses on and animates specific algorithmic

operations in tandem with pseudocode highlighting and textual explanations. Finally, animations

in a "Populated View" show the algorithm's aggregate performance and behavior on large data

sets. This multi-level design approach addresses the debate by Byrne et al (1996) over whether

animations are better suited for presenting the 'big picture' or for illustrating details. They

stated: "There is the paradoxical problem that an animation that shows the big picture or

emerging qualities might be appreciated only by those who already understand the algorithm at

the mechanical level."

3.1.5. SEMANTIC CHUNKING

Most animations provide playback capabilities in the form of VCR-like controls,

allowing the user controls such as Forward, Pause, and Cancel. A novel feature of our

framework is what we call 'semantic chunking' which entails subdividing the animation into

logical operations at different levels of detail, and allowing the user to control the granularity of

the playback. The concept of chunking deals with the practical limits of a person's short term

memory. Miller (1956) states that the average person recognizes about seven units or chunks of

information at a time for retention in short term memory. The size and complexity of each chunk

is small with novices, but grows with experience as smaller chunks are clustered into larger

48

concepts (Vessey, 1985). Our framework presents algorithm animations in discrete chunks

accompanied by explanations of the specific actions being accomplished. By chunking

animations into meaningful "bite-sized" pieces and providing logical pauses between chunks, the

student is able to better digest the abstract, dynamic information being presented. Allowing the

student to adjust the size of chunking tailors the flow of information to meet individual needs.

This is in stark contrast to most current algorithm animation systems which present the detailed

dynamics as a one-shot, stand-alone show that is entertaining to watch but tends to obscure the

very details a student needs to learn.

We determined that the following levels of chunking needed to be implemented for our

prototype system:

• Statement level- pause the execution at each logical step of the algorithm.

• Pass- pause the execution upon completion of a logical unit of statements, such as a

logic operation or a single pass through an iterative sequence.

• Completion- allow the execution to proceed to completion.

Most animation systems we reviewed implemented statement level pausing, and virtually all

allowed the animation to proceed to completion. Some added a feature to alter the speed of the

animation, similar to a fast-forward button on a VCR, but to our knowledge, no system explored

chunking levels in the way proposed above. Our work proposes three levels, but future research

may discover that more levels are needed to adequately 'decompose' the semantic structure of

more complex algorithms.

49

3.1.6. PURPOSEFUL INTERACTION

Our framework emphasizes encouraging student participation by allowing rich

interactions with the animations and using probes or questions that stimulate thinking and foster

self-explanations. The central notion of constructivism is that understanding and learning are

active, generative processes (Soloway et al, 1996) involving self-explanation (Chi, Bassok,

Lewis, Reimann & Glaser, 1989), problem solving and reflective articulation (Narayanan et al.,

1995). Experiments conducted by Lawrence et al. (1994) indicate a learning advantage for

students who had active involvement in the creation of input values to algorithm animations.

Other researchers espouse incorporating animations in an active learning environment rather than

a passive viewing one, that allows students to interact with the data (Stasko et al, 1993;

McWhirter, 1996; Pierson & Rodger, 1998; Sangwan & Korsh,1998), or go so far as to have

students build their own animations in the role of an instructor (Stasko, 1997; Naps & Bressler,

1998; Dershem & Brummond, 1998; Ford, 1993). In contrast, research in different domains

indicates that passively watching an animation does not facilitate learning (Hundhausen, 1996).

Therefore, the visualization framework we propose incorporates a variety of features to stimulate

purposeful interactions.

Our framework supports interaction at the data input level by prompting students to input

data sets of their choosing in order to explore algorithm behavior more thoroughly. Additionally,

our framework supports reflective thought and self-explanation through use of questions that are

posed periodically to the student. The simplest form is called a "tickler", which is a question that

pops up in random order but always in an appropriate context. Tickler questions are open-ended,

focus student attention on specific issues, challenge their understanding and promote self-

explanations to improve comprehension. Their answers are not entered into the computer nor is

50

feedback provided. Below are several examples of tickler questions used in conjunction with a

specific step of the SelectionSort algorithm visualization:

• On this pass, which element will move into the leftmost unsorted position?

• How many swaps will occur in this pass?

• How many passes will it take until the remaining values are in place?

• What will the inner loops beginning and ending values be?

• As the sort progresses, the boxes to the left side get grayed-out...Why?

• Could you write the pseudocode for this algorithm?

Another way to encourage self-reflection is to prompt for predictions about expected

actions or outcomes. As with tickler questions, verifying correctness is left to the student and not

checked by computer. Unlike ticklers, the computed result is presented to the user for

comparison. An example of a predictive question for the SelectionSort algorithm would be to

ask the student to predict how many comparisons (or swaps) the algorithm will perform for the

entire execution of a selected data set, then present the actual tally upon completion.

The last type of question we employ are questions for which computer validation is

performed and feedback provided. These questions can be true/false, multiple choice, and

involve orderingWe also place multiple choice questions, requiring students to enter answers in

order to proceed further, at "articulation points" between modules of the visualization. In this

case, immediate feedback is provided by the system.

Posing questions will help combat a shortcoming reported in other multimedia systems

called the 'TV syndrome' or the 'hands-on, mind-off situation by making student interaction

active and purposeful. These questions are tied to learning objectives set out by the designer.

These questions and feedback help students self-diagnose their learning and allow reflection on

what they know, what they don't, and where to find relevant information.

51

3.2. PROTOTYPE DEVELOPMENT

To test the theoretical framework for the hypermedia visualization system described in

the previous sections, an algorithm visualization prototype needed to be constructed and

empirically tested. The prototype system that implements the framework is called the

Hypermedia Algorithm Visualization System (HalVis). HalVis is written using Asymmetrix

Toolbook, a prototyping and hypermedia authoring environment, to test the components of the

framework. As of this writing, it contains visualizations of four sorting algorithms (BubbleSort,

SelectionSort, MergeSort and Quicksort), the Merge algorithm, and one graphing algorithm

(Shortest Path). A number of empirical studies using these algorithm visualizations have been

conducted. The sections below describe the architecture of the HalVis prototype in its current

form. Subsequent chapters present results from the empirical studies conducted to validate and

analyze the framework.

3.2.1. HALVIS ARCHITECTURE

HalVis has been constructed using five main modules, forming an architectural template

for algorithm visualizations (Figure 3.1). The modules are the Conceptual View, the Detailed

View, the Populated View, the Questions module and the Fundamentals module. Each algorithm

is presented using the template described below.

52

Alg#n

I Alg #2

Alg#l

I
Conceptual View
Real world analogy

introduces basic
operations

Questions

Detailed View
shows specific steps

using animation, text,
pseudocode and data

structures

Questions

X

Populated View
comparisons &

aggregate
performance on large

data sets

Questions

z
Fundamentals

Figure 3.1. The HalVis Architecture

3.2.2. FUNDAMENTALS MODULE

This module contains information about basic building blocks common to virtually all

algorithms. Examples include Comparing & Swapping Data, Looping Operation, Recursion, and

so on. Topics can be added to the Fundamentals module as needed to address student's prior

knowledge or the prerequisites of a particular algorithm. Generally, this module is accessible

only through hyperlinks from other modules, so that the basic information is presented on

demand (in response to a learner request in the form of clicking on a hyperlink) and in context (of

algorithm-specific information within which the hyperlink is embedded).

53

3.2.3. THE CONCEPTUAL VIEW

This module introduces a specific algorithm in very general terms using a real world

analogy. We wanted examples that mapped closely to the algorithms being studied, and gave

high priority to having the properties discussed in Section 3.1.3 (fidelity, interactivity and

realism). In most cases, we created the analogies and examples based on personal experiences or

analogies we had seen used effectively in other classes or textbooks. An example of each of the

conceptual view screens and the associated analogy implemented in the prototype is listed in

Table 3.1 and shown in Figures 3.2-3.14. For instance, BubbleSort (Figure 3.2) is introduced

using a flask of water with bubbles that rise to the surface according to their size (Figure 3.3),

starting with smallest bubbles and gradually working up to the largest ones. Figures 3.4 and 3.5

show screens from the conceptual view of the MergeSort algorithm, where cards are animated to

illustrate dividing and merging to create a sorted sequence. Some analogies are more elaborate

and interactive than others. For example, two of the analogies (Merge and Shortest Path) are

presented as animated examples followed by a game/simulation that lets the student interact with

the example while following the operations of the algorithm. This module uses animations, text

and audio to provide the student with a "big picture" description, a visual example to aid long-

term retention, and sufficient bridging information to proceed from the visual elements in the

analogy to the data structures and algorithm operations in later modules.

54

Algorithm Analogy employed Interactivity Fidelity Realism
Bubble Sort Bubbles in a flask that

rise to the surface
• None Mere appearance High

Selection Sort A line of people of
various height that need
to be placed in order.
The tallest person of
each pass would raise
his hand

• Paced animation Literal similarity High

MergeSort A deck of cards • Paced animation Literal similarity Medium

Merge A deck of cards • Timed
simulation

Literal similarity High

Quicksort A line of people of
various height that need
to be placed in order.
Groups split around a
'pivot' person

• Paced animation Literal similarity Medium

Shortest Path Airfares between
various connecting cities
and a common
destination

• Paced animation
• Randomized

simulation

Literal similarity High

Table 3.1. List of Analogies Used in HalVis

55

Objective jThls screen provides the basic idea of the Bubble Sort algorithm using a real-world example

lap-
(S Men«

Bubble sort gets its name from the
world of physics, where bubbles in

water rise to the surface.
Generally, when a bubble is

knocked loose and begins its
ascent, it continues till it rises to

the surface. Usually, a bubble will
knock into and move around other

bubbles on its way.

In Bubble Sort, we let the smallest
(or largest) item float to the top of
the list, then repeat for the next
smallest, then the next, until all

Kerns have bubbled up (or down)
to their proper place.

! Animate Bubbles

Figure 3.2. The Conceptual View Screen of the Bubble Sort Algorithm

Figure 3.3. The Bubble Sort Animated Analogy

56

Objective JTbis screeTTprotfides the basic idea of the Selection Sort algorithm using a realworld example

< Menü >

Select sort works like kids lining up at
school when the beH rings. They assemble
in random order. To put them in order, the
the teacher scans (or "passes') down the
Pne, selecting the shortest person to trade
places with whoever is at the head of the

fine.

ft
j*^MJd^;!3!MI^.S

Then the teacher scans the remaining
students to find the next smallest person,

trading Hiem with the person in the second
position. Then the third shortest is

selected and mimed into the third slot, and
so on until everyone in the line is in order.

Show Me the Rest

Figure 3.4. The Conceptual View Screen of the SelectionSort Algorithm

Figure 3.5. The SelectionSort Algorithm Animated Analogy

57

Objective [This screen provides «he basic Idea of the MergeSort algorithm using a real-world example

Introduction to MergeSort < Menu >

MergeSort takes its name from
the fact that it uses a merge

procedure to create an
ordered sequence. In fact

uses just two simple
operations, one that splits a
sequence into two parts and

another that merges two
sequences into a single,

ordered one.

Starting with a single dataset,
MergeSort splits it into two
halves, recursively sorts the

halves, and merges the halves
back into a single dataset.

Show Me The Split Operation

Figure 3.6. The Conceptual View Screen of the MergeSort Algorithm

P
*%

Mr. ISA

2

• ••

*
»♦
♦
♦5

■

* *
* *
••1

♦♦♦
♦♦

*
♦

*

10

* •

1 » »10 4

5

♦♦♦
2

2

-J&LJJL "jXM,iiuLin^lll L ^>" ■ Ü mt**r'3Muii xoröerWJßequenceeor*...

• ••

-Jl

*♦

Figure 3.7. The MergeSort Algorithm Animated Analogy

58

Objective [This screen provides the basic idea of the Merge algorithm using a real-world example

Introduction to Merging j< Menu >

Merging things together is a common task.
For example, automobile traffic merges from

one highway arto another. Companies merge,
forming a single corporation where 2 once

existed.

In computers, we often must merge data
from 2 streams into one, and usually we want

the result to be ordered.

Here, we are given 2 stacks of cards that need
to be merged into a single, ordered deck.
Basically, we compare the top item of each

stack and move the smaller of the two into the
first available position of the finished stack.

We continue doing this until aNthe Kerns haue
been moved.

Show Me the Merge Operation

H^*C:M5rJ^jQ*lm.?l

Lets begin

This game pits vou against the clock. The object is to click
on the card that the MERGE algorithm would choose in the
least amount of time and with the fewest errors. The timer
begins when vou dick OK

w

Figure 3.8. The Conceptual View Screen of the Merge Algorithm

Merge
l

repeatedly
compares the
top two cards *v

and
moves the
smallest

♦ u i
♦♦ i i

♦♦♦ >♦♦ u.
♦ ♦ ♦ ♦♦ ♦ ♦

•
*! ♦5 4 *♦? ♦♦;

• ♦

Figure 3.9. The Merge Algorithm Animated Analogy

59

Lets begin

r* Tt
A
J^

■•M
This game pits you against the clock. The object is to click
on the card that the MERGE algorithm would choose in the
least amount of time and with the fewest errors. The timer
begins when you click OK

OK

Complete!

You took 37 seconds

And made 0 Mistakes

AL
♦

♦
A

2

♦»

2

3
* ♦

♦s

4

4

5 S
♦♦♦
♦ ♦

3

• ♦
♦•1

10

**•

w ww

Figure 3.10. The Merge Algorithm Interactive Simulation

60

Objective (This screen provides the basic idea of the Quicksort algorithm

Menu Introduction to Quicksort

Quicksort works by choosing an arbitrary
element, called the pivot item, and

segregates aH the items in the group
based on whether they are larger or

smaller than the pivot. When complete, the
group is partitioned into two subgroups,

one composed of elements bigger than the
pivot and another composed of elements
smaller than the pivot. The pivot stands

between the two subgroups.

Show Me the First Partitioning J

Hext, Quicksort takes these two
subgroups, and performs a Quicksort on
each of thefn-^eventuany stopping when

the suUists contain just 1 value, and are by
default, in order within themselves.

Show Me the Rest

Figure 3.11. The Conceptual View Screen of the Quicksort Algorithm

Howdy, man name is Mr Phot!
Shorter people to rny left

tellerpeoptetorny right, please... f

First, we pick
someone in the group

and use him as the
standard (or pivot) to

divide the group....

Figure 3.12. The Quicksort Animated Analogy

61

Objective [This screen provides the basic idea of the Shortest Path algorithm using a real-world example

Menu Introduction to Shortest Path Algorithms
Determining the shortesMeast-cost path

between linked objects is a common problem
we deal with. For example, in the airline

industry, cities are linked by jets that often stop
in other cities on the way. Consumers often

find that the cheapest route is not the shortest
one, as depicted in the «ample below.

The Shortest Path (SP) algorithm finds the least
costly path from a selected starting point to

every other poM of a connected group. It does
this by considering the possible routes

between places in a systematic way: from the
starting point, the cheapest of the possible

flights one city away is chosen. Next, it
chooses the cheapest of the flights from either

the starting point or the city just chosen one
hop away. On the 3rd pass, the algorithm picks £
the 3rd shortest route, then the 4th, and so on

until an cities hate been «sited. Each pass
finds the shortest path to one more dry. Try

the esample below to see how it works:

If you feel up to a dnlenge, you can try sowing
the SP problem for yourself. Click on the

button below to set up some ficticious rates,
then click on the cities that you think are on the

SP from Montgomery to Cancun

Chicago

Dalhs

Let me tjy

Figure 3.13. The Conceptual View of the Shortest Path Algorithm

CMe^a

At üils point, we have confirmed the cheapest
way to get to each city except our final

destination, or ail the fares seen so far, the
cheapest we know of is the connection through

Chicago and New Yorit on to Cancun. That
represents the cheapest path for us.

Figure 3.14. The Shortest Path Algorithm Animated Analogy/Simulation

62

3.2.4. THE DETAILED VIEW

This module describes the algorithm at a very detailed level using two presentations. One

consists of a detailed textual description of the algorithm alongside a pseudocode representation of

it (Figure 3.15). Embedded in the text are hyperlinks to related information in the Fundamentals

module. The second presentation (Figure 3.16) contains four windows that depict various aspects

of the algorithm's behavior. The Execution Animation window shows how steps of the algorithm

modify data structures using smooth animation. The animation is chunked at multiple levels of

granularity corresponding to semantically meaningful units of the algorithm's behavior, with the

level of chunking selectable by the learner. At the lowest level, the animation displays the

execution of an individual statement, pausing for the learner's signal to proceed. The next level

corresponds to a logical operation, like completion of a single pass in a loop. At the highest level,

the animation proceeds to completion without pausing. The Execution Status Message window

provides comments and textual feedback to the student about key events and actions during

execution. This is also available as an audio commentary. The Pseudocode window shows the

steps involved in the algorithm, which are highlighted synchronously with the animation. Finally,

the Execution Variables window displays a scoreboard-like panorama of the variables involved in

the algorithm and their changing values. Before launching the animation, students can change the

data input to the algorithm as well as the speed and granularity of animation and feedback using a

control panel (Figure 3.17). Execution of each step of the algorithm affects the display in the four

windows simultaneously. Figure 3.16 shows seven data elements to be sorted using the MergeSort

algorithm. When the user presses the ShowMe button, the four windows spring to life, moving the

seven data items as needed and pausing between chunks until the algorithm is finished. HalVis

63

intentionally limits the number of data items in the Execution Animation window to focus attention

on the micro-behavior of the algorithm.

Objective Describe the essential behaviors of the MergeSort algorithm and introduce high-level pseudocode

Topics'

Bade
Description of MergeSort

MeraeSort is a recursive algorithm that uses a DMde-and-Conauer
approach to generate sorted sequences. The essential idea is to djrfde the
nput tst recursively into halves urrtl one element remains, then make

proc mergesortCArray)
if Array contains more than 1 element
Jrtddte = (tengthCArray» '2

►^LeftHalf = mergesort(Arrayfl .Mddle])

wder) into a 3rd 1st (also in order). ^r

MergeSort has 4 simple operations: ^r

1. Split the input Mohahies (here it simplyfinds the midpoint)
2. MergeSort the left hair
3. MergeSort the right haw
4. Merge the two sorted halves into a single sorted äst

MergeSort calls itself with half-sized Bsts until it reaches the base case,
rite base case is when the input to MergeSort contains only 1 element and
cannot bB divided any further. BydefauH, a list of one element is in order, .
so what gets returned is an ordered sequence of 1 element to be merge^r
■nth another partial (but ordered) 1st. S

rite algorithm for Merging two sequences into one is shown here and
described in more detail by following the Merninn link.

Jecause MergeSort splits the input in half, this algorithm is very efficient,
mmtwiti "Nl on N" steps. This is much loss than the N squared comptexity
if Bubble and Selection Sort algorithms. So, for a list of SO elements,
MergeSort requires approximately 300 steps whereas Bubble sort would
require 2500!

RightHalf = mergesort(ArrayIMidc«e+1 ..N])
ResuJArray » merge(LeftHalf,RigftHarO
Return ResultArray

else
Return

endif
endproc

Proc merge(LeftHall .RightHalf)
f loop

it leading Sem in LeftHalf < leading item in RightMalt
append leading item «i LeftHalf to Result

else
append leading item v\ RightHalf to Result

endif
until LeftHalf or RightHalf is empty
while LeftHalf contains elements

append remaning items from LeftHalf to Resut
endwtiile
while RightHatf contains elements

append remaining items from RightHalf to Result
endwhBe
return Resul

end

Figure 3.15. The Description Screen for the MergeSort Algorithm

64

Objective Comprehend the structure and function of the MergeSort Algorithm

Detailed Look at MergeSort Topics
Bad:

KSSEfiaSl jShö'wWe ->

Execution Animation
The Merge Sort Algorithm

HS
4 9

aaa
Execution Variables

proc mergesont Array)
iftength(Array)>1

...M«Ä= OengthC Array)) / 2
LeftArray = mergesort(Array[1 .MddleD
RightArray _= rnergesra^AirayfMjddle+1^.N$
ResutArray = merge(LeftÄrray, RprtAffay)^
return ResutArray

Recursion Depfti Let Middle Right

m n~
Comparing IComparisons

i *r~ i 1 1 4

Total Calls

1 8

Execution Status Messages

CaSng MergeSort for elements 1 thru 2 oSpRting at #1
Base case reached; Returning element 1 for merge
Base case reached; Returning element 2 for merge
Merging subEsts 1 and 2

Comparing 1 and 2 ...moving 2
lushing leftside element 1

Caffing MergeSort for elements 3thru 4 oSpRting at # 3
Base case reached; Returning elemert 3 for merge
Base case reached; Returning elemert 4 for merge

Press here to continue Animation

Figure 3.16. The Detailed View Screen of the MergeSort Algorithm

Sort Controls

Sort Order

Ascending

O Descending

; Speed Controls

Animation Execution Movement Speed

<S> Pause at Each Step © Slowest Speed

O Pause at Each Pass O Medium Speed

O Dorrt Pause O Fastest Speed

Source of Data for Sorting

O Use Default Data

® Let Me Enter Data

I Use the Spinners below to setthe values you want loaded for sorting

Item 1 Kern 2 Item 3 Item 4 Item 5 ItemC Item 7

Figure 3.17. A View of the Control Panel of the Detailed View Screen

65

3.2.5. THE POPULATED VIEW

This module is intended to provide students with an animated view of the algorithm on

large data sets to make its macro-behavior explicit. In this birds-eye view (see Figure 3.18), many

of the details presented in the detailed view are obscured to enhance the student's focus on the

algorithm's performance. Notice, for example, that the pseudocode is not shown. The variables

are not shown as numbers but rather as colored bars. Animations and animation controls in this

module are similar to those in previous systems, but there are two novel features. One is a panel of

counters that show pertinent performance-oriented information such as number of comparisons,

swaps, recursive calls, and so on. Another is a facility for the student to make a prediction about

different parameters of algorithm performance and then compare those against the actual

performance when the animation is running. When the learner presses the ShowMe button, the

algorithm prompts for predictions, initializes the bars (data) into random, ascending or descending

order, and proceeds to execute the algorithm. During execution, the bars change color and move

about, accompanied by audio explanations and cues. Color coding is used to convey information

such as already processed data and data elements currently being processed.

66

Objective bbserue and compare how the MergeSort algorithm works on larger sets of numbers

MogeSort in Action
%

Toptes

Back
>

Show me:

fiterji£So^ |

..iiiiimilt .HI

SMSJCCt SMOCfl

(or press LETT moose barton Amng
alggxiUuii execution to adpst)

J Fastest
J

Medium

j Slowest

ll .llll

Color Legend
I I Recursive CaH
upending

Figure 3.18. The Populated View Screen

3.2.6. QUESTIONS MODULE

This module presents the student with several questions at articulation points between the

other modules to facilitate and help them self-assess comprehension. A combination of multiple

choice, true-false, and algorithm debugging questions are provided. Students get immediate

feedback on their answers (Figure 3.19). HalVis also uses tickler questions as shown in Figure

3.20. The context-sensitive ticklers help focus the student's attention on key aspects of the

algorithm being studied. Collectively, the use of questions promotes self-reflection, self-

explanation, and sparks student interest.

67

Objective [Test your knowledge about specific aspects of Oijkstra's Shortest Path algorithm

Questions about Shortest Paths Topics >
Back

_J Questionl

J Question?

_J Question3

*f Question'!

How many times will vertex C manipulated in solving the shortest
path:

#|Visrted_ jmceje^qred 3 trmesj

O Visited once, explored 2 times

O Visited 2 times, explored 3 times

O VisitaH nn^Rfixplored once

Conecti Node C is explofed when nodes B,E J
are visited because C is adjacent to then.

oo
Figure 3.19. Feedback-style Question

Objective

< I Menu I >

This screen presents the algorithm and demonstrates how it functions, focusing on the key design

HPüi tetimm^ Detailed Look at Selection Sort

Temp

IIBBaBS

X Y_
Comparing

MW 4 Rcmnl

rr IT-

»ofCwtparisorB tfofSwaps

MN = X
fory=x+1 toN

if a|y] < alMWl

*-y.

swap a|MINl and sjx]
endfor

On this pass, which element will become
'MIN' and to where will it be moved?

Continue 1

Figure 3.20. Tickler-style Question

4. VALIDATING THE FRAMEWORK

We conducted empirical evaluations to validate the effectiveness of the framework

outlined in the previous chapter. This chapter describes how the experiments were conducted

and the results that were obtained.

4.1. EFFECTIVENESS: WHAT ARE WE LOOKING FOR?

Effectiveness is a broad concept with several aspects to consider before diving into formal

research. The factors that we believe are significant to consider are:

• Comprehension: This refers to how closely the student came to meeting the learning

objectives set forth by the instructor. Generally this is measured by testing the student.

A system that improves comprehension over alternative systems would be regarded as

more effective. Alternatively, this could be referred to as short-term retention.

• Retention: This is a measure of comprehension over time. Research indicates humans

have short term memory, capable of retaining small bits of information for a matter of

minutes, and long term memory, capable of recalling information for years. A system

that improves long term retention is clearly more effective.

• Speed: How long did it take the student to meet the learning objectives? A system that

helps students learn material more quickly without sacrificing the other factors would be

considered more effective.

68

69

• Satisfaction: This refers to how engaging the system is to the student. Before and

during the session this could be called motivation. After the fact, this is often referred to

as satisfaction. Either is a difficult thing to measure quantitatively, and are generally

reported as subjective figures. Generally, a system that fosters greater learner

satisfaction without negatively affecting the other measures should be considered a more

effective system. This is not always the case though.

Notice that some of the measures can lead to a conflict. Consider speed and satisfaction, for

example. Because a motivated student is more likely to spend greater amounts of time with

software that is engaging and rewarding, it does not necessarily follow that such a system is less

effective. Nor does it follow that a system that takes less time but has extremely low satisfaction

is better or worse either. Researchers simply have to determine which measures are most

important for their domain. In our experiments, we focus on comprehension and retention as the

primary measures of the effectiveness of our theoretical framework. We believe (and hope) that

student satisfaction with our system will be very positive. We report speed measures

anecdotally.

We justify this position by observing that previous empirical research resulted in virtually

unanimous student satisfaction with algorithm animations as a learning method, but none showed

that the use of animation leading to increased student performance. Hence, for our purposes, we

recognize the importance of speed in learning, but place higher priority on achieving higher

comprehension, retention and satisfaction. In the sections that follow, we use the terms

comprehension and 'learning' interchangeably, referring to the improvement in student

performance as measured by the difference between individual pre-test and post-test scores.

70

4.2. EXPERIMENTS WITH HYPERMEDIA ALGORITHM VISUALIZATIONS

We conducted experiments to evaluate and substantiate the effectiveness of hypermedia

visualization of algorithms, specifically to validate our belief that a hypermedia system

incorporating text, images, and animations would be an effective tool for teaching students about

algorithms. Specifically, our experiments were designed to compare using the Hal Vis framework

to learn about algorithms with the methods currently used by instructors to teach their students.

Common teaching instruments include textbooks, lectures, and laboratory experiences. More

recently, instructors have also started using algorithm animations (Stasko, 1997). A survey of

computer science instructors (Badre et al., 1991) showed that over 80% of instructors use at least

one of these methods to teach algorithms to students. Previous experiments on the effectiveness

of algorithm animations as teaching tools compared experimental groups employing a

combination of instructional media, as shown in Table 4.1.

Research Reference

Lawrence et al. 1994

Crosby & Stelovsky 1995

Stasko et al. 1993

Badre et al. 1991

Byrne et al. 1996

Subj.
Level
K13

K13

K17

K14

K15

Comparison Groups

Animation + Lecture + Laboratory

Animation + Lecture + Homework

Animation + Text

Animation + Handout

Animation + Video Lecture + Text

Slides + Lecture + Lab

Slides + Lecture + Homework

Text

Lecture + Handout

Diagrams + Video Lecture + Text

Table 4.1. Prior Experiments Involving Algorithm Animation

A criticism of previous empirical research was a failure to sufficiently isolate the

visualization from other learning techniques (Hundhausen, 1996). To avoid confounding the

various factors, we designed experiments to specifically compare our visualization framework

with learning from a textbook (Experiment I), learning from a textbook that includes completing

71

exercises (Experiment H), and learning from a lecture (Experiment HI). While we acknowledge

that most instructors use a combination of teaching methods, our approach is to isolate each

method and compare it with our AV framework for statistical analysis. Lastly, we designed an

additional experiment (Experiment IV) to replicate the environment used by several previous

researchers who combined text with animation and compared it to the hypermedia-only

approach.

Our hypothesis was that students would learn more effectively using Hal Vis than from

other teaching methods, as indicated by their performance in pre-tests and post-tests. The five

individual experiments are summarized in Table 4.2, showing the student level, the learning

media used by the comparison groups, and the algorithm(s) studied. The first experiment

compared learning with HalVis to learning from textbooks alone. To gain insight into the effects

of algorithm complexity and student ability, the experiment had two components, one that

exposed novice students to a relatively simple algorithm, and the other that exposed more

advanced students to two algorithms of moderate complexity. Extending this comparison further,

Experiment II compared learning with HalVis to learning from a compilation of the best

descriptions and depictions extracted from a survey of 19 textbooks followed by solving a set of

exercises. The third experiment compared learning from HalVis to learning from lectures.

Finally, the fourth experiment compared learning from HalVis to learning from the combination

of a typical algorithm animation and text. These experiments, we felt, would help us determine

the comparative effectiveness of the HalVis framework. In these experiments we used pre- and

post-tests to measure students' ability to recognize and reorder pseudocode descriptions of

algorithms, mentally simulate algorithmic operations, and predict resulting data structure

changes. We did not differentiate between visual and verbal learners since HalVis contains rich

textual and visual presentations to support both kinds of learner dispositions.

72

Level Comparison Groups Algorithm(s)
Experiment I a K14 HalVis Text + Diagrams MergeSort (MS)

Experiment I b K15 HalVis Text + Diagrams MergeSort
Quicksort (QS)

Experiment II K14 HalVis Text + Diagrams + Exercises BubbleSort (BS)
SelectionSort (SS)

Experiment HI K14 HalVis Lecture SelectionSort
MergeSort

Experiment IV K15 HalVis Text + Animation Shortest Path (SP)

Table 4.2. Experiment Summary

The general format of each of the experiments involved:

• Gathering participants from appropriate computer science courses.

• Dividing participants into balanced, matched groups. Balanced groups were necessary to

ensure that results were not skewed or biased by differing group capabilities. The

matched groups were created by random assignment from a rank-ordered list of subjects

based on results of a demographic survey that gathered information regarding academic

performance and potential (GPA, ACT/SAT scores, class standing, etc). In experiments

involving two groups, successive pairs of subjects were drawn from the rank-ordered list

and randomly assigned to one group or the other. In experiments involving four groups

like the ablation studies in the next chapter, four subjects were drawn from the list at a

time, and randomly assigned to one of four groups. Finally, after the matched groups

were created, the treatment condition that each group was to receive for the experiment

was randomly designated to eliminate any possibility of bias.

73

• Administering a Prior Knowledge Survey ("pre-test") to assess pre-existing individual

knowledge about the algorithm to be studied, thereby establishing a baseline from which

to measure improvement more precisely. The pre-test was different from the

demographic survey used to create the groupings, in that the pre-test measured

algorithmic knowledge about the specific algorithm the group was about to study in the

experiment whereas the survey merely gathered information about general academic

potential. Without a pre-test, measuring individual improvement would be difficult and

could invalidate our results.

• Conducting the experiment.

• Administering a Knowledge Improvement Survey ("post-test") to evaluate the

participant's knowledge about the algorithm following the experiment.

• Gathering student comments and impressions about the software they used in a survey, if

appropriate, and examining the logs that recorded student activity while using the

hypermedia software.

4.2.1. EXPERIMENTS IA AND IB: COMPARISON OF HALVIS WITH

TEXTUAL LEARNING

This experiment consisted of a pair of studies intended to explore our hypothesis that

students would learn more effectively using the HalVis animation-embedded hypermedia

framework than by printed materials from a textbook. We conducted the experiment in two

phases using similar procedures but students at different levels in their computer science

curriculum. The first experiment involved 28 novice students enrolled in an introductory data

structures and algorithms class. The second experiment employed 22 more experienced students

learning two algorithms of greater sophistication.

74

4.2.1.1. Experiment la

Subjects:

The experiment involved 33 undergraduates enrolled in an introductory data structures

and algorithms course at Auburn University. Subjects received course credit for their

participation. In the first week of the quarter, subjects completed a demographic survey

providing information such as GPA, ACT and SAT scores. We used this information to rank

students and create a matched pair of groups: one group (called the "Text" group) would learn

about the MergeSort algorithm using textbook descriptions, and another group (called the

"Algorithm Visualization" (AV) group) would learn the MergeSort algorithm using the HalVis

algorithm visualization tool. The groups were initially balanced but five students did not

complete all facets of the experiment and their data is not included. Of the 28 students

completing all aspects of the experiment, twelve students were in the Text group and sixteen

students were in the AV group. The loss of the five students did not imbalance the groups and

skew the results. The average GPA and ACT score of the Text group was 2.9 and 28,

respectively. The average GPA and ACT score of the AV group was 3.0 and 27, respectively.

Materials

The Text group received a photocopied six-page extract from a textbook (Dale, Lilly &

McCormick, 1996) that discussed the MergeSort algorithm. The handout included a description

and analysis of the algorithm, various diagrams, and program code.

The AV group learned about the MergeSort algorithm using the HalVis system with no

supplementary materials provided.

A pre-test/post-test combination (see Appendix B.4.1) measured individual learning

performance with nine questions that probed conceptual and procedural knowledge about the

algorithms. Students were tested on their ability to recognize and reorder pseudocode

75

descriptions of algorithms, mentally simulate algorithmic operations, and predict resulting data

structure changes. The pre-test measured prior knowledge about the algorithm and the post-test

measured changes resulting from experimental conditions.

Procedure

We structured the experiment to follow class lectures covering basic program design and

fundamental data structures, but precede lectures that covered sorting algorithms. Towards the

middle of the quarter, participants were asked to complete a pre-test that measured their prior

knowledge about the MergeSort algorithm. The pre-test results helped us verify that the two

groups were evenly balanced, and provided a baseline against which to compare subsequent

changes. The pre-test scores indicated that the subjects did not know this algorithm and that the

groups were evenly distributed (Average = 27% for the Text group and 28% for the AV group).

During the following week, the AV group met in a public computer laboratory. They

were given a five minute introduction to HalVis, which oriented them to the various screens they

would encounter and provided them with basic navigational tips. The students were then

assigned to a computer and instructed to interact with the software until they felt they understood

the MergeSort algorithm. The computers were Pentium-class systems with 15 inch color

monitors. Subjects were not given any text material to study, nor had they been exposed to the

MergeSort algorithm in the class prior to the experiment. There was no time limit, so when each

subject indicated he/she was done, he/she was given a post-test that helped measure knowledge

improvement. No student in the AV group took more than 60 minutes for the entire experiment.

On the same day the Text group met in a classroom, and was provided with photocopied

handout describing the MergeSort algorithm. They were not provided any other information, nor

had they been exposed to the MergeSort algorithm during class lectures. They were asked to

learn the MergeSort algorithm from the materials provided, with no time limit imposed. When

76

they finished studying the explanatory materials provided, they were given a post-test and

allowed to leave. No student in the text group took more than 45 minutes for the entire

experiment.

Results

The overall results are summarized as box plots in Figure 4.1. The box indicates the

range of entries in the 25* through 75th quartile, and the lines extending to the left and right show

the range of scores for the entire group. The thick vertical line in the box indicates the mean, and

the thin line represents the median value for the group.

The pre-test results indicate that both groups were equally unfamiliar with the MergeSort

algorithm. The post-test averages show a significant improvement for the AV group over the

Text group. The AV post-test average was 74% compared to the Text group's 43%, and the

results are significant for both the overall performance (F(l,27)=10.9, p<0.003) and for

improvement (F(l,27)=6.7, p<0.015). The statistical summary is shown in Table 4.3.

77

Statistical Summary

Pre-Test Post-Test Improvement
(raw)

Text Group 27% 43% 16%

AV Group 28% 74% 46%

F(l,27) 0.01 10.9 6.7

Significance
level

p<0.93 p<0.003 p<0.015

Table 4.3. Experiment la Statistical Summary

Experiment la Comparison (MS)
Text-PreTest

1 1 1 |_ i i i r
Text-PostTest

1 III 1 III

AV-PreTest
1 || 1 ., i !■ I

AV-PostTest
 r~ II \ 1_

i i i
0 25 50

1
75

I
100%

Figure 4.1. Experiment la Box Plots

Figure 4.2 shows the individual pre-test and post-test scores of each subject by group.

Each participant is indicated by his/her randomly assigned ID number on the vertical axis. Pairs

of horizontal bars indicate each participant's test performance. The light bars represent pre-test

performance and the dark bars show post-test performance. No bar is shown when the

corresponding score is zero. The tables below provide the percentage grade obtained by each

participant in pre- and post-tests. It is interesting that every subject in the AV group improved

his/her knowledge, but two subjects in the Text group (Til and T05) actually did worse.

78

TextQop

TI2 1

1

TO

TO

TO

TOT

n ~ TO ^^^^^m
i

IM

TO

TO

TD1

^^^^^^^
0% 1« 2354 30% 40% 80% 7ÖÜ 8054 90% 100%

TOI TO TO 10» IDS TO 107 KB KB TO Til TI2

DPO CB4 33)4 0)4 0)4 7864 44% 0>/. 11% 0)4 ♦84 W/. 67%

I peg 4454 aw 0)4 364 9W. 99)4 78* *B4 0)4 *B4 oy. WCP/.

AV Group

V16

VIS

VI4

VI3

VI2

VI1

WO

V09

«W

VU/ 1

VD6

V05 1

\04

WB

VU2

V01
 r ., „ | ,

V01 V02 V03 V04 V05 V06 V07 V06 V09 V10 V11 V12 V13 V14 V15 V16

DP8 0% 44% 22% 0% 33% 22% 44% 11% 89% 78% 0% 11% 0% 44% 44% 0%

■ post 100% 67% 56% 67% 56% 7B% 100% 44% 100% 89% B9% 56% 89% 44% 89% 67%

Figure 4.2. Experiment I Individual Results, by Group

Discussion

These results suggest that novice students perform better in answering conceptual and

procedural questions about the MergeSort algorithm after learning from a hypermedia algorithm

visualization than after studying a typical textbook. However, there are several factors that must

be mentioned to keep these results in perspective. First, one could argue that a different textbook

could have led to different results. We believe we reduced the possibility of this form of bias by

using a text that was competitively selected from books reviewed by a group of professors and

graduate students in the Computer Science Department at Auburn University. While we consider

the material we used was from a well-written book, Experiment IE was designed to probe this

issue further. Second, only novice students participated in this experiment. It is possible that

79

more advanced students may benefit more from a textbook explanation of an algorithm.

Experiment lb investigated this possibility.

Third, difference in student motivation between the groups could have influenced the

results. The level of enthusiasm observed in the HalVis group was much higher than in the Text

group. The novelty of the visualization and the interactive features of HalVis seemed to engage

the students' interest. In contrast, there was nothing new or uniquely motivating for the Text

group. Fourth, familiarity with the learning materials provided could have had an influence. The

Text group did not have to acquaint themselves with a new user interface, software system or

learning from interactive visualizations. They were all familiar with reading and learning from a

textbook. The students in the AV group had to contend with a new interface and a different way

of learning. If this factor indeed played a role, the AV group exhibited a higher level of

comprehension despite any additional cognitive effort involved in learning the interaction and

navigation facilities of HalVis. The opposite could also be the case, however, in that the

computer science students in the Text group might have performed poorly because of a

pronounced discomfort with printed materials of any kind and would have demonstrated a

preference for any kind of computerized alternative.

4.2.1.2. Experiment lb

This experiment was similar to Experiment la in that the goal was to compare the

effectiveness of learning using HalVis to learning from printed materials from a textbook. Our

aim was to test whether results of Experiment la could be replicated with more sophisticated

algorithms and higher level students. We asked students to learn the MergeSort and Quicksort

algorithms. Unlike the previous experiment, these participants completed all components of the

experiment in one day: a pre-test, learning two algorithms, and a post-test.

80

Subjects

This experiment involved 22 undergraduate computer science students enrolled in a third

year algorithm analysis course at Auburn University. Like Experiment la, participants were

ranked based on academic ability (using on course performance up through mid-term grades in

the course) and assigned to a matched pair of groups: a "Text" group and an "Algorithm

Visualization" (AV) group. Students were given extra credit for participating. Eleven students in

the Text group and eleven students in the AV group completed the experiment. The average

class mid-term score for subjects in the Text group was 21.5 and 21.6 for subjects in the AV

group.

Materials

The Text group received a ten page photocopied extract from their course textbook

(Weiss, 1993) that discussed the MergeSort and Quicksort algorithms.

The AV group learned about the MergeSort and Quicksort algorithms using the HalVis

system with no supplementary materials provided.

A pre-test/post-test combination measured individual learning performance with 18

questions that probed conceptual and procedural knowledge about the algorithms. Students were

tested on their ability to recognize and reorder pseudocode descriptions of algorithms, mentally

simulate algorithmic operations, and predict resulting data structure changes. The pre-test

measured prior knowledge about the algorithms and the post-test measured knowledge

improvement resulting from the experimental conditions.

81

Procedure

We structured the experiment to precede the class lectures that dealt with sorting

algorithms. Towards the middle of the quarter, on the day of the experiment, all participants met

in a classroom and completed the pre-test. Afterwards, members of the AV group were taken to

a public computer laboratory, while the Text group remained in the classroom.

In the computer laboratory, the AV group was given a brief navigation-only orientation

to the HalVis system, then assigned to individual computers to interact with the software and

learn the algorithms. Students were allowed to take as much time as needed. They did not have

access to any supplementary materials. As each subject finished interacting with the

visualizations, a post-test was given. All subjects completed the experiment in less than two

hours.

The Text group was given the extract from their course textbook. This contained a

typical combination of textual descriptions and explanations, diagrams, pseudocode and program

examples. Like the AV group, there was no time constraint. When a subject signaled completion

of studying the materials, he/she was given the post-test and allowed to leave. All students in the

Text group completed the pre-test, studied the textual materials and completed the post-test in

less than 90 minutes.

Results

The overall results are summarized as box plots in Figure 4.3. The pre-test results

indicate that both groups were equally unfamiliar with both algorithms. The post-test averages

show a significant improvement for the AV group over the Text group. The AV post-test

average was 63% compared to the Text group's 44%, and the results are significant for both the

overall results (F(l,21)=4.96, p<0.038) and for improvement (F(l,21)=9.29, p<0.006). The

82

statistical summary is given in Table 4.4, showing both aggregate and algorithm-specific results

for each group.

Statistical Summary

Pre-test Post-test Improvement
(raw)

Text (MS) 44% 53% 9%

AV (MS) 48% 71% 23%

Text (QS) 10% 35% 25%

AV (QS) 4% 55% 51%

Text (MS+QS) 27% 44% 17%

AV (MS+QS) 26% 63% 37%

F(l,21) 0.02 4.96 9.29

P p<0.89 p<0.038 p<0.006

Table 4.4. Experiment lb Statistical Summary

r Experiment lb Comparison (MS&QS)
*v

Text-PreTest (MS&QS)
■ 1

Text-PostTest (MS&QS)
■ 1

AV-PreTest (MS&QS)
■ 1

AV-PostTest (MS&QS)

— 1

■-

1 1 1 1

0 25 50 75

1
100%

J

Figure 4.3. Experiment lb Box Plots

83

Discussion

These results parallel those of Experiment la in suggesting that students perform better in

answering conceptual and procedural questions about the MergeSort and Quicksort algorithms

after using a hypermedia visualization system to learn than after studying a typical textbook. As

shown in Table 4.5, the more advanced status of the students led to higher prior knowledge

scores for the MergeSort algorithm (44% and 48%), which was much higher than the pre-test

levels observed in the novice students of Experiment I (27% and 28%). This is not a surprising

result, since it is reasonable to expect that the more advanced students could have been exposed

to the MergeSort algorithm before, and even if not, to grasp the essential concepts more readily

than novice students. Together, these two experiments suggest that learning by visualization

leads to better comprehension than by printed text for novice and more advanced students. As

Table 4.5 indicates, AV groups improved their performance by approximately two to three times

compared to the performance improvement of the Text groups in the two experiments.

Interestingly, the AV groups in both experiments reached the same level of performance after

interacting with HalVis though they started off with different levels of prior knowledge.

Experiment la Experiment lb

Pre-test Post-test Pre-test Post-test

Text Group 27% 43% 44% 53%

AV Group 28% 74% 48% 71%

Table 4.5. Comparison of Results of Experiments la and lb

As with Experiment la, there are several factors to consider to keep these results in

perspective, such as textbook quality, student experience and ability, motivation, and familiarity

84

with learning approaches used in the experiment. This experiment added a significant load to the

learning task, requiring students to learn two fairly challenging algorithms in one session, as well

as complete a pre-test and a post-test in the same session. This cognitive load could have

affected the test performance of both groups.

4.2.2. EXPERIMENT II: COMPARISON OF HALVIS TO LEARNING FROM

TEXT WITH EXERCISES

This experiment was conducted in a similar fashion to the ones previously described,

involving students relatively new to algorithmic study, and compared the effectiveness of

learning from HalVis to learning from text and problem solving. The goal was to provide one

group with the best possible descriptive and depictive printed materials and a set of exercises, in

order to investigate the limits of learning from HalVis by comparing it with learning from

carefully designed, detailed textual and diagrammatic explanatory materials coupled with

problem solving. We chose to use the BubbleSort and SelectionSort algorithms for this

experiment. While these are relatively simple algorithms, we felt that asking participants in this

experiment who were novice students, not yet exposed in depth to the subject of sorting, to learn

both algorithms in one session would represent a reasonable cognitive load.

Subjects

The experiment involved 25 undergraduate computer science students enrolled in an

introductory data structures and algorithms course at Auburn University. Subjects received

course credit for their participation. In the first week of the quarter, they completed a

demographic survey providing information such as GPA, ACT and SAT scores. We used this

information to rank students and randomly assign them to form two matched groups: one group

(called the "Text" group) that would learn about the BubbleSort and SelectionSort algorithms

using a handout that we created and then completing a series of problem solving exercises, and

85

another group (called the "Algorithm Visualization" (AV) group) that would learn the same

algorithms using the HalVis algorithm visualization tool alone. Twelve students in the Text

group and thirteen students in the AV group completed the experiment. The average GPA and

ACT scores for the Text group were 2.92 and 28 respectively. The average GPA and ACT

scores for the AV group were 2.96 and 27, respectively.

Materials

The Text group received an eight-page explanation that contained both textual

descriptions and graphic depictions of the BubbleSort and SelectionSort algorithms, along with

several exercises. The handout was subjected to a stringent review by a group of faculty and

graduate students to address the issue of the quality of text used in the previous experiments.

After reviewing the descriptions, depictions and examples of the BubbleSort and SelectionSort

algorithms contained in nineteen textbooks published between 1974 and 1997 (Aho, Hopcroft &

Ullman, 1974; Aho, Hopcroft & Ullman, 1983; Baase, 1988; Dale, Lilly & McCormick, 1996;

De Lillo, 1993; Hard, 1992; Horowitz & Sahni, 1978; Kingston, 1990; Knuth, 1973; Kozen,

1992; Manber, 1989; Nance & Naps, 1995; Reingold & Hansen, 1983; Rowe, 1997; Sedgewick,

1988; Shaffer, 1997; Singh & Naps, 1985; Weiss, 1993; Wirth, 1986), we selected the best

explanations we could find. These explanations were then edited to increase clarity and merged

to create a handout containing textual and pictorial explanations of the two algorithms. We also

developed and included a set of "end of chapter" style exercises in this handout for students to

solve after perusing the explanations. This handout is provided in Appendix B.5.2.

The AV group learned about the BubbleSort and SelectionSort algorithms using the

HalVis system with no supplementary materials provided.

A pre-test/post-test combination measured individual learning performance with

questions that probed conceptual and procedural knowledge about the algorithms. Students were

86

tested on their ability to recognize and reorder pseudocode descriptions of algorithms, mentally

simulate algorithmic operations, and predict resulting data structure changes. A copy of the post-

test is included in Appendix B.5.1.

Procedure

As with the previous experiments, we timed the experiment to follow class lectures

covering basic program design and fundamental data structures, but precede those that covered

sorting algorithms. Towards the middle of the quarter, participants were asked to complete a pre-

test that measured their prior knowledge about the BubbleSort and SelectionSort algorithms. In

addition to providing a baseline against which to compare subsequent changes, the pre-test

results also helped us verify that the two groups were evenly balanced.

The following week, the AV group met in a computer laboratory on campus. They were

given a five minute introduction to HalVis, which oriented them to the various screens they

would encounter and provided them with navigational tips. The students were then assigned to a

computer and instructed to interact with the software until they felt they understood the two

algorithms. The computers were Pentium-class systems with 15 inch color monitors. Subjects

were not given any text material to study, nor had they been exposed to the algorithms in class

lectures. There was no time limit, so when each subject indicated he/she was done, he/she was

given a post-test that helped measure knowledge improvement. No student in the AV group took

more than 90 minutes for the entire experiment.

On the same day, the Text group met in a classroom, and was provided with the handout

described above. They were asked to read and understand the materials and then to solve the set

of exercises at the end. They were not provided with any additional information, nor had they

been exposed to these algorithms in class lectures. When they finished studying the descriptive

87

materials and attempting the exercises, they were given a post-test and allowed to leave. No

student in the text group took more than 60 minutes for the entire experiment.

Results

The overall results are shown in Figure 4.4. The pre-test scores indicated that the

subjects did not know these algorithms and that the groups were evenly matched (Average = 35%

for the Text group and 31% for the AV group). The post-test averages show an improvement of

30% for the AV group to only 22% for the Text group. These results, while indicating better

learning for the AV group, are not statistically significant as can be seen in Table 4.6.

Statistical Summary

Pre-test Post-test Improvement
(raw)

Text 35% 57% 22%

AV 31% 61% 30%

F(l,24) 0.36 0.32 0.82

P p<0.55 p<0.57 p<0.37

Table 4.6. Experiment II Statistical Summary

The results are summarized as box plots in Figure 4.4. The box indicates the range of

entries in the 25th through 75th quartile, and the lines extending to the left and right show the

range of scores for the entire group. The thick vertical line in the box indicates the mean, and the

thin line represents the median value for the group. The box plots reveal a wider dispersion of

scores in the post-test results of the Text group, but a much tighter clustering in the post-test

results of the AV group.

Experiment II Comparison (BS/SS)
Text PreTest

1 1 1 1
Text PostTest

1 1

AVPreTest
II II

AV PostTest

— 1

k

1 1 1 1
0 25 50 75

1
100%

Figure 4.4. Experiment II Box Plots

Figure 4.5 shows the individual pre-test and post-test scores of each subject by group.

Each participant is indicated by his/her randomly assigned ID number on the vertical axis. Pairs

of horizontal bars indicate each participant's pre- and post-test scores. The light bars represent

pre-test performance and the dark bars show post-test performance. The tables below provide the

percentage grade obtained by each participant in pre- and post-tests. Two subjects in the Text

group (T06 and T07) and one subject in the AV group (V10) did worse after the experiment than

they did on the pre-test. This is the first time, in the three experiments conducted thus far, where

the performance of a member of the AV group decreased.

89

TextQap fVQrojp

TI2

TI1

TO

TO

TO

TO
a

TO

TO

TDt

TO

TO

TD1

0]P/o

V13

Vt2

V11

V10

VD3

VCB

a W

V03

VC6

vot

VÜ3

«2

voi

0 K,

1

i

1
—\

l

n

1

I
l

 1
1

1 l

34 20% 40% 60% 8CP/0 10

1 , , ,

% 20% 40% 60% 8CP/0 10

T01 TO TO TDt TD3 TO TO TO TO no TI1 TI2 VOI WE VCB vot VCB VC5 wy VC3 VCB V» V11 VT2 VT3

OPB 20% ao% 63% 29% 1ff/o 2SP/o 45% 3B% 55% 10% 68% 50% DPB 30% •By. w. 29% 29X 15% 4C% 3CP/o EP/o ecp/o 45% 47/. 5B%

■ pcd 65% 45% 7554 SE% 63% 2CP/o 30% 66% 83% Toy» 75% 36% IPOS 80% 6054 4?/. 65% KP/« 79% 70% eo% eo% 43% ED% ecp/o 70%

SCcre SCOTS

Figure 4.5. Experiment II Individual Results, by Group

Figure 4.6 shows performance by question (see Appendix B.5.1. for the questions) across

the two groups for the post-test. For each question on the vertical axis, the horizontal axis

provides the number of subjects who answered it correctly. It can be seen that only in three

questions did the text group outperform the AV group: questions 7 and 11 dealing with worst

case orderings, and question 10 that examined the number of swap operations the SelectionSort

algorithm would require.

Figure 4.7 shows performance across pre- and post-tests by the AV group. For each

question on the vertical axis, the horizontal axis provides the number of subjects who answered it

90

correctly. If none answered a question correctly (Q5b, pre-test), the corresponding bar is not

shown. This figure illustrates the substantial increase in the number of students answering

correctly the questions dealing with algorithm recognition (Ql, Q3), behavior (Q6, Q8, Q10,

Q12, Q14) and data ordering (Q5, Q9, Q13) after interacting with the visualizations of the

algorithms.

Discussion

The combination of using simpler algorithms, significantly improving the text and asking

students to engage in problem solving had a marked impact on the Text group's performance. It

improved to a level on par with that of the AV group. Our conclusion from this experiment is

that AV appears to be as effective for novice students to learn about algorithms as learning from

carefully crafted textual materials coupled with problem solving exercises. Factors we did not

control for, such as motivation and familiarity with textual descriptions and exercises may also

have influenced the results.

91

Question Comparison (PostTest)

Q1

Q2a

Q2b

Q3

Q4a

Q4b

Q5

Q6

Q7

Q8

Q9

Q10

Q11

Q12

Q13

Q14 i

□Text-Post

■AV-Post

4 6 8 10

Number Answered Correctly

12 14 16

Figure 4.6. Comparison of Post-test Responses, by Group

92

Comparison by Question (AV Group)

Q1

Q2a

Q2b

Q3

Q4a

Q4b

Q5

Q6

Q7

Q8

Q9

Q10

Q11

Q12

Q13

Q14

 • • ■■■■■■ ■■■

illinium

[QAV-Pre

■AV-Post

0 2 4 6 8 10 12

Number Answered Correctly

14 16

Figure 4.7. Comparison of AV Group Pre-test and Post-test Responses

93

4.2.3. EXPERIMENT III: COMPARISON OF HALVIS AND LECTURE-BASED

LEARNING

This experiment was designed to compare HalVis with classroom lectures, and also to

investigate how HalVis and lectures can together contribute to learning. We wanted to (1) verify

our hypothesis that students learning from HalVis would outperform students learning by lecture

alone, (2) measure additional learning obtained by combining lecture and HalVis, and (3)

investigate whether the order (HalVis before lecture, or vice versa) would make a difference in

performance. Participants in this experiment were novice computer science students, and the

algorithms used were SelectionSort and MergeSort.

Subjects

The experiment involved 27 undergraduates enrolled in an introductory data structures

and programming course at Auburn University. Subjects received extra credit for their

participation. In the first week of the quarter, the subjects completed a demographic survey

providing information such as GPA, ACT and SAT scores. We used this information and current

class standing to rank and assign students to a matched pair of groups, a Lecture-Visualization

(LV) group and a Visualization-Lecture (VL) group. The LV group received a class lecture

discussing the algorithms, then interacted with the visualizations of the two algorithms in a

computer laboratory. The VL group interacted first with HalVis, then attended the class lecture

covering the algorithms. There were nine students in the LV group and eleven in the VL group

that completed the three components of the experiment; seven students (six in the LV group and

one in the VL group) did not complete all three components and their data is not included in the

analysis below. The average mid-course grade for students in the LV group was 86% and the

average for the VL group was 82% of the points possible at that time in the course.

94

Materials

All participants attended a lecture on the two sorting algorithms provided in two

consecutive 50-minute class sessions conducted by Dr. Dean Hendrix, a member of the Auburn

University Computer Science and Engineering Department faculty. His lecture consisted of

verbal instruction accompanied by blackboard diagrams, overhead transparencies, and a lecture

summary handout. He responded to several questions from students in the class during the

lecture.

Both groups interacted with the same visualizations of both the SelectionSort and

MergeSort algorithms, with no supplementary materials provided.

A pre-test/mid-test/post-test combination measured individual learning performance with

questions that probed conceptual and procedural knowledge about the algorithms. Students were

tested on their ability to recognize and reorder pseudocode descriptions of algorithms, mentally

simulate algorithmic operations, and predict resulting data structure changes.

Procedure

The phases of this experiment were carefully synchronized with the class syllabus. The

week before the scheduled lecture about sorting algorithms, students were given a pre-test to

measure prior knowledge about the two algorithms and to obtain a baseline to measure

subsequent changes.

The day before the lecture, the VL group met in a computer laboratory on campus,

interacted with HalVis to learn the two algorithms, and completed a mid-test. This test measured

changes in knowledge resulting from HalVis interaction. The same lecture was attended by both

of the groups. We chose to use a regular classroom lecture over a videotaped one to allow student

interaction with the professor and to simulate a realistic learning environment. Having both

groups attend the same lecture eliminated variations between separate lectures.

95

The day after the lecture, the LV group met in a computer laboratory on campus and first

completed the same mid-test taken by the VL group. This test measured changes in knowledge

resulting from the lecture for the LV group. Then the group was assigned to computer terminals

and asked to interact with HalVis to learn the two algorithms. When they felt they understood

the algorithms, they were asked to complete a post-test and allowed to leave. On this same day,

the VL group met in a classroom and completed the same post-test. The post-test measured the

final knowledge level of the two groups after both the lecture and the interactive sessions.

We designed the experiment to minimize outside interactions that might affect the

results. First, while we did not explicitly instruct students not to read the course textbook or try

to learn more about the algorithms from other sources, only one of the algorithms was covered in

the course textbook. A question in the mid- and post-tests asked the students whether they had

read about the algorithms elsewhere. None of the students indicated on the mid-test that they had

read about the algorithms, but four indicated on the post-test that they had. We did however ask

students to refrain from discussing any aspect of the experiment during its course.

96

Group Comparison

100%

80%

60% -
<D

§ 40%

20%

0%

70% 72% 72%

44%

19%
7%

Pre Mid

By Test

Post

Figure 4.8. Comparison of Group Pre-Test, Mid-Test and Post-Test Performance

Test Comparison

100%

80%

£ 60%
o
W 40%

20%

0%-)—

72% 70% 72%

44%

19%
7%

£

DPre

■Mid

■Post

LV VL

By Group

Figure 4.9. Comparison of Group Performance Change in Tests

Results

Examining the results depicted in Figure 4.8, we see that both groups were relatively

unfamiliar with the algorithms based on their pre-test averages (7% for the VL group and 19%

for the LV group). The mid-test results indicate the VL group learned more than the LV group:

97

following the session with HalVis, the VL group average score was 70% compared to 44% for

the LV group after the lecture, representing an improvement of 63% for the VL group and just

25% for the LV group. Hence, despite having less prior knowledge about the algorithms, in the

mid-test, the VL group, after interacting with the algorithm visualizations, significantly

outperformed the LV group that received a classroom lecture. The improvement in additional

knowledge gained by the VL group from the subsequent lecture session was marginal (scores

rose from 70% on the mid-test to 72% on the post-test), whereas the visualization helped the LV

group catch up with the VL group by the time of the post-test, with their scores rising from 44%

on the mid-test to 72% on the post-test.

Another view of the results is depicted in Figure 4.9, showing the improvement in each

group's performance as measured by test following the visualization and lecture treatments.

Again, large increases in knowledge as measured by test performance occurred in both groups as

a result of interacting with algorithm visualizations. The LV group experienced a 25%

improvement in average score after receiving the lecture, then improved another 28% following

the AV interaction. The VL group experienced a 63% improvement after the visualization, while

the following lecture provided an improvement of only 2%. Another interesting observation is

that both groups eventually reached similar levels (72%) of performance. The LV group showed

steady increases following the lecture and then the visualization. The VL group showed a

substantial increase resulting from visualization alone, to which the lecture session did not add

considerably.

These results appear to indicate that interactive hypermedia visualizations produce

greater gains when prior knowledge is limited, and that a conventional lecture does not appear to

provide significant additional learning benefits. On the other hand, students with prior

knowledge gained by conventional instruction can also benefit from hypermedia visualizations.

98

Statistical support for these conclusions is provided in Tables 4.7,4.8 and 4.9. Table 4.7 shows

the between-group statistical results. The post-test results show that the order in which lectures

and visualizations are presented does not appear to make a difference, as both groups scored

approximately the same (72% for the VL group and 72% for the LV group, (F(l,19)=0.001,

p<0.97)). While these post-test results are not significantly in favor of either group, Table 4.8

shows that the mid-test performance results are significantly in favor of the group that interacted

with the visualization first (VL group) compared to the group (LV group) receiving the lecture

(F(l,19)=11.87,p<0.033).

Pre-test Mid-test Post-test

LV 19% 44% 72%

VL 7% 70% 72%

F(1,19) 1.78 5.3 0.001

P p< 0.198 p < 0.033 p < 0.97

Table 4.7. Experiment III Statistical Summary: Between Groups (Overall Performance)

Table 4.8 shows that the score improvement from the pre-test to the mid-test favored the

group receiving the visualization, which for this first phase of the experiment was the VL group

(F(l,19)=26.89, p<0.0001). Additionally, the score improvement from the mid-test to the post-

test also favored the group receiving the visualization, which for this second phase of the

experiment was the LV group (F(l,19)=l 1.87, p<0.003). These results suggest that the HalVis

visualization leads to a significant improvement in learning.

99

Pre-to-Mid-Test
Improvement

Mid-to-Post-Test
Improvement

Overall Improvement
(Pre-to-Post)

LV 25% 28% 53%

VL 63% 2% 65%

F(1,19) 26.89 11.87 1.16

P p < 0.00001 p < 0.003 p < 0.29

Table 4.8. Experiment III Statistical Summary: Between Groups (Improvement)

Specific test-to-test improvements for the two groups are shown in Table 4.9. Here, the

only result that did not yield statistical significance was the improvement in performance for the

VL group, when they went from having interacted with the visualization to receiving the lecture.

The lecture added only 2% to the overall performance. But this effect is not statistically

significant, indicating that the visualization prior to the lecture must have been the primary cause

of overall improvement. In all other cases, both the lecture and the visualization resulted in

significant improvements in knowledge.

pre-to-mid mid-to-post pre-to-post

LV F(1,19) 6.35 5.037 21.62

P p < 0.023 p < 0.039 p < 0.0002

VL F(1,19) 43.97 0.016 73.44

P p < 0.00002 p < 0.899 p < 0.0000004

Table 4.9. Experiment III Statistical Summary: Within Group (Improvement)

These results are summarized as box plots in Figure 4.10. The box indicates the range of

entries in the 25th through 75th quartile, and the lines extending to the left and right show the

range of scores for the entire group. The thick vertical line in the box indicates the mean, and the

100

thin line represents the median value for the group. The distribution of scores is interesting. The

distribution in the LV group appears to be similar in each of the three tests, with quartiles that are

approximately equidistant from a well-centered mean. The distributions are not as uniform

across the tests in the VL group. The pre-test is tightly clustered and positively skewed. The

mid-test following the visualization shows a wide distribution of scores, which then tightens up

following the lecture to a more normal-appearing distribution. This seems to indicate that

individuals may not have uniformly benefited from the visualization to the same extent, and that

this dispersion was somewhat remedied by the lecture which presumably benefited those who did

not significantly gain from the visualization. These individual differences are masked by the 2%

overall improvement of the VL group from the lecture. This argues for hypermedia algorithm

visualizations supplementing, rather than replacing, traditional instruction.

Experiment IV Comparison (SS&MS)

LV-PreTest

VL-PreTest a

LV-MidTest

25

LV-PostTest

VL-MidTest

VL-PostTest

50
T"
75 100

Figure 4.10. Experiment III Box Plots

101

Discussion

This experiment shed interesting insights on the three hypotheses that we set out to

investigate. First, the results support the hypothesis that learning by visualization is more

effective than learning by lecture alone. The mid-test results captured the improvement caused

by visualization in the VL group and lecture in the LV group. The results of this first phase were

statistically significant (from table 4.7: F(l,19)=5.3, p<0.03).

Second, these results suggest that the combination of learning by visualization and

lecture leads to improvements over learning by visualization or lecture alone, as both groups'

scores improved with each added phase/treatment. However, the improvement gains after groups

received the second treatment were not uniform. The improvement observed by adding the

visualization to the LV group was large (28%) and statistically significant (table 4.9:

F(l,19)=5.037, p<0.039). However, the improvement observed in adding the lecture to the VL

group was only 2% and not significant (from Table 4.9: F(l,19)=0.016, p<0.89).

Third, as to the impact of the presentation order in the final outcome, these results

suggest that order does not matter in terms of overall performance. After completing both

phases, the two groups performed at about the same level (-72%, F(l,19)=0.001, p<0.97).

However, as noted above, the greatest jump in performance of all the pairings was the 63%

improvement observed in the VL group following the visualization. It should be noted that in

this experiment, the lecture and the visualization were fairly redundant in their content, with both

approaches giving similar basic information about the algorithm including general and detailed

descriptions and examples of the algorithm in action. This insight would suggest that instructors

that couple classroom lecture with hypermedia visualization can and should alter the depth and

content of the lecture to be less redundant with the basic notions covered effectively by

102

visualization software. Preceding the lecture with a visualization lab should free the instructor

from spending valuable lecture time covering the algorithm basics to allow delving into deeper

material about the algorithm such as performance issues, design trade-offs, boundary cases and

so on.

Naturally, there are factors that could have influenced these results. The most obvious

one is the quality of the lecturer. To address this issue, we requested the services of a highly

rated (by students) professor who had taught introductory computer science courses several

times. Dr. Dean Hendrix is known to be an excellent lecturer. We developed the experiment so

that all the participants would attend a single lecture, to avoid the possibility that one lecture

session could have covered the material in a different way than another. We also chose to have a

live lecture instead of a videotaped one, to allow teacher-student interaction more typical of a

classroom environment.

One factor we did not control for was that some students might have read additional

textual materials between the phases of the experiment. To reduce this possibility, we

intentionally used the SelectionSort algorithm which was not mentioned in the course textbook.

MergeSort was however covered in the textbook. We asked the students how much time they

spent reading the text, if at all. Only four indicated that they had read the text, and the average

time indicated was 10 minutes. We did not detect any significant differences in performance

between the algorithm described in the textbook and the algorithm not covered in the textbook.

4.2.4. EXPERIMENT IV: COMPARISON OF HALVIS AND LEARNING FROM

TEXT & CONVENTIONAL ANIMATION

This experiment was designed to compare our algorithm visualization framework to the

environment typified by previous empirical studies which measured learning after participants

viewed a textual description of an algorithm and then viewed an animation. The algorithm we

103

selected was Dijkstra's Shortest Path algorithm. It is conceptually difficult, and is different in

style (a graph algorithm) from all algorithms used in the previous four experiments (sorting

algorithms). Our hypothesis was that a properly designed hypermedia visualization would be a

more effective tool for learning algorithms than a conventional algorithm animation combined

with text.

Subjects

This experiment involved 38 undergraduate computer science students enrolled in a third

year algorithm analysis course at Auburn University. Like previous experiments, participants

were ranked based on their course performance up through mid-term grades, GPA, and

ACT/SAT scores, and randomly assigned to create two matched groups: a "Tango" group and a

"HalVis" group. Students were given extra credit for participating. Twenty students in the

Tango group and eighteen students in the HalVis group completed the experiment. There were

two students assigned to the HalVis group that did not complete the experiment and while their

results are not included, their absence did not appear to bias the groups as will be seen in the

section discussing the results. The average GPA and ACT scores for the HalVis group were 3.20

and 27.4, respectively. The average GPA and ACT scores for the Tango group were 3.13 and

28.1, respectively.

Materials

Tango Algorithm Animation: One of the most mature and widely available algorithm

animation platforms is the Tango software suite developed by Dr. John Stasko (Stasko, 1990;

Stasko, 1997), publicly available from Georgia Institute of Technology at

ftp.cc.gatech.edu:/pub/people/stasko. The Tango software distribution executes on Windows95

systems and includes a library of animated algorithms. Three researchers in our group carefully

examined eight animations of the Shortest Path algorithm available in this distribution, and

104

selected one that appeared to be the most complete, easiest to understand, and which most

closely matched the features of the HalVis system (i.e., use of multiple representations,

contextual descriptions and animated pseudocode).

Hypermedia Algorithm Visualization: A visualization for the Shortest Path algorithm

was built and provided in HalVis.

Handout: The Tango group received a supplement to help them learn the Shortest Path

algorithm, which consisted of a five page extract from their textbook (Weiss, 1992). This was

done to simulate the conditions under which Tango-style animations were previously

experimentally evaluated (Lawrence et al., 1994), when the visualization groups received textual

supplements in addition to the visualization.

Test Questions: A pre-test/post-test combination measured individual learning

performance with questions that probed conceptual and procedural knowledge about the

algorithm. Students were tested on their ability to recognize and reorder pseudocode

descriptions of algorithms, mentally simulate algorithmic operations, and predict resulting data

structure changes. The pre-test measured prior knowledge about the algorithms and the post-test

results measured changes resulting from the experimental conditions.

Procedure

As with the previous experiments, we timed the experiment to precede the course

lectures that covered the subject of graph algorithms. Towards the end of the quarter,

participants were asked to complete a pre-test that measured their prior knowledge about the

Shortest Path algorithm. In addition to providing a baseline against which to compare

subsequent changes, the pre-test results also helped us verify that the two groups were evenly

balanced.

105

In the following week, both groups met in the same public computer laboratory on

campus, but at different times. Both groups received a brief, navigation-only orientation to the

software they were to use, then were assigned to a computer and instructed to interact with the

visualization until they felt they understood the algorithm. The computers were Pentium-class

systems with 15 inch color monitors.

Members of the HalVis group were not given any text material to study, nor had they

been exposed to the algorithm earlier in class. There was no time limit for either group, so when

each subject indicated he/she was done, he/she was given a post-test to measure knowledge

improvement. No student in the HalVis group took more than 90 minutes for the entire

experiment.

Members of the Tango group received an extract from their textbook describing the

Shortest Path algorithm and were assigned to a computer to interact with the animation. They

were not provided with any other information, nor had they been exposed to this algorithm

during class lectures. When they indicated they understood the material, they were given a post-

test and allowed to leave. No student in the text group took more than 60 minutes for the entire

experiment.

Results

Examining the results shown in Table 4.10 below, we see that both groups were

relatively unfamiliar with the algorithm based on the pre-test averages (23% for the Tango group

and 22% for the HalVis group). The post-test results show that the HalVis group's scores

improved to 89% while the Tango group improved to 71% (F(l,37)=12.75, p<0.001).

The results are also summarized as box plots in Figure 4.11. The box indicates the range

of entries in the 25th through 75th quartile, and the lines extending to the left and right show the

range of scores for the entire group. The thick vertical line in the box indicates the mean, and the

106

thin line represents the median value for the group. The distribution of scores is interesting.

Generally, the HalVis pre-test score distribution is tight and normal looking, but there are two

outliers (shown as black dots) that scored very well, indicating prior knowledge of the Shortest

Path algorithm. The distribution of the HalVis group's post-test scores indicates a tighter

clustering, with one outlier at 69% (shown as a black dot), compared to the post-test score

distribution of the Tango group. The post-test score distribution of the Tango group also shows

(as a black dot) the presence of one outlier who scored extremely poorly.

Statistical Summary

Pre-test Post-test Improvement
(raw)

Tango 23% 71% 48%

HalVis 22% 89% 68%

F(l,37) 0.01 12.75 4.79

P p<0.91 p<0.001 p<0.035

Table 4.10. Experiment IV Statistical Summary

Experiment V Comparison (SP)

HalVis-PreTest

HalVis-PostTest

 1 h-

B ^ammt m I I^J^^^

Tango-PreTest
i 1 1 1 1 1

Tango-PostTest
11
II

I I 1
0 20 40

I 1 1
60 80 100

Figure 4.11. Experiment IV Box Plots

107

Discussion

This experiment compared our HalVis algorithm visualization framework with an

animation generated from a popular algorithm animation package. We chose Tango since Tango

and its predecessors form a set of algorithm animations that have not only been extensively

described in the literature (Stasko, 1990; Stasko, 1997) but also have been the subjects of

significant experimental analyses reported in the literature (Byrne et al., 1996; Kehoe & Stasko,

1996; Lawrence et al., 1994; Stasko, 1997; Stasko et al., 1993). The Tango animation was well-

paced, showed good use of color to highlight algorithm actions, included a brief textual

introduction, contained contextual explanations and provided the student with the algorithm's

pseudocode, whose lines were highlighted synchronously as the animation proceeded. We

supplemented this animation with pages describing the algorithm from the course textbook

(Weiss, 1993) in order to provide the student with as much information about the algorithm as

possible in a standalone setting, and to replicate as closely as possible the conditions of algorithm

animation experiments reported by other researchers. The results indicate that our framework for

hypermedia algorithm visualization design is more effective than an algorithm animation

representative of current approaches.

How did our Tango group compare to previous experiments reported in the literature that

used Tango under similar circumstances? One experiment reported in (Lawrence et al., 1994)

compared groups using the Tango animation system in conjunction with a lecture and active or

passive laboratory assignments to learn Kruskal's Spanning Tree algorithm. In their study, one

group's conditions closely matched that of our experiment: the group that received a prepared

lecture (roughly corresponding with our group that received text) and a Tango/Polka animation

that contained contextual descriptions but did not permit data modification (passive laboratory).

108

The comparison is shown in Table 4.11. While there are many factors that render an exact

comparison impossible, such as the different algorithms used, the general results appear to

suggest that our experimental group using Tango performed comparably with their corresponding

experimental group.

Comparison Summary

Pre-test Post-test

Lawrence et al, 1994 N/A 75%

HalVis 22% 89%

Tango 23% 71%

Table 4.11. Comparison of Results with Lawrence et al. (1994)

As with the other experiments, there are several factors potentially influencing the

results. The high scores of the HalVis group in the post-test indicates a possible ceiling effect

that might have suppressed a greater separation between the groups. Another factor could be the

quality of the Tango animation. We attempted to address this by selecting the best and most

comparable animation from the eight supplied with the Tango distribution files. We believe that

we chose a representative animation. Nevertheless, it is possible that a different Tango

animation might have led to different results for the Tango group. A similar argument could be

made for the text (photocopied pages from the course textbook) that was provided to the Tango

group. The textbook has been used for several years at Auburn, and it is considered to be a good

choice for an algorithm analysis course.

109

4.3. GENERAL DISCUSSION

4.3.1. COMPREHENSION

Our experiments were designed to test the effectiveness of a novel framework for

hypermedia algorithm visualizations, a framework that embeds animations in a context and

knowledge providing hypermedia environment, against traditional methods of instruction.

Comparisons with learning from a textbook, learning by reading carefully constructed textual

explanations and solving problems, learning from lectures, and learning by interacting with an

algorithm animation representative of extant research on the topic, all indicated the significant

advantages of the HalVis framework from a self-directed learning perspective. Results from four

of the five experiments were statistically significant for different levels of students and different

kinds of algorithms. The performance of students in Experiment II showed a positive but non-

significant trend favoring visualizations, suggesting that a hypermedia visualization can be as

effective as learning from a well-crafted mixed mode explanation (text + diagrams) combined

with problem solving.

4.3.2. SATISFACTION

In addition to measuring quantitative performance, we captured a log of user activity and

gathered subjective evaluations from participants to gain insight from their perception of the

system and the visualization experience. We found some of the comments and suggestions

useful in helping to shape and modify the appearance and navigational structure of the system.

Preliminary analysis of the user logs showed that students executed the detailed-level animations

an average of three times and viewed the populated-level animation an average of four times.

This was an interesting finding, since we anticipated the students would run the detailed-level

animations more than this, and the populated animation less. We found that over half of the

110

students experimented with entering their own data for at least one execution of the algorithm at

the detailed level, and every student elected to make performance predictions during at least one

execution at the populated level.

Students overwhelmingly (87%) enjoyed interacting with the visualization and 92%

indicated they would prefer learning by visualization if given the choice in the future. Extracts

of some of the positive comments include: "Animation made it easier to understand ... more

interesting ... much better than reading a book ...". Students liked ".. .being able to rerun the

animation until you understand ... step by step...," as well as the questions and ability to make

predictions. One student said, " I liked being able to see [efficiency]~I didn't realize there was

that much difference." And another noted, "I liked the fact that the voice explains what is going

on while the animation is going on." There were some negative comments too. Students

mentioned constructive things like: "It could use more sound," and "The reoccurring text was

annoying." Interestingly, there were conflicting comments like one who said, "It was too

detailed," contrasted to another that observed, "It was too simplistic."

These results parallel virtually every study we have read. Detailed figures are available

in Appendix C for those interested in gleaning more from these subjective comments.

4.3.3. RETENTION

Another measure of success for educational systems is increased information retention

over time. Many researchers speculate that hypermedia systems and animations are information-

rich, engaging, and contain a wealth of content that may enhance long term retention. Research

has shown that people remember minute details contained in pictures much more accurately than

information described in text (Mayer, 1989), but very little research has been reported about the

long term effects on retention of viewing an animation. Our belief is that several facets of the

Ill

HalVis framework can enhance long term retention, particularly the use of animation in the

Detailed View and the use of a real-world analogy in the Conceptual View to introduce the

algorithm. Yet we recognize the many mitigating factors that make quantitative empirical

research difficult. There are many confounding variables that intervene in the time between

subjects viewing an animation and being tested weeks, months or years later to measure long-

term retention. Nonetheless, we desired to gather some retention data to explore this area.

One year after Experiments I through IV, we found twelve subjects that had been

involved in learning the MergeSort algorithm who volunteered to participate in a retention

study. Six had learned the MergeSort algorithm as a member of a Text-only group, and six had

learned the algorithm using HalVis. They took a brief retention test involving questions very

similar to ones they had seen on pre- and post-tests a year earlier to measure their recall of this

algorithm. The subjects from the visualization group did 66% and the subjects from the Text

group averaged 60% on the retention post-test. The results were not statistically significant, but

the experiment was not intended to produce such formal results because of the many intervening

and confounding factors that made what were once matched groups now unpredictably different.

We could not control nor account for experiences they might have had over the year between the

post-test for the initial experiment and the retention post-test that could have reinforced or

obfuscated the concepts they had learned a year earlier. However, the results do reflect a slightly

positive trend favoring the animation condition, and constitute one of the first quantifiable, albeit

informal, retention studies in algorithm visualization research. Perhaps a more significant

indicator of retention is the fact that five of the six visualization students, when asked what they

remembered most about the system, specifically recalled the analogy.

112

4.3.4. SPEED

Another measure of success that researchers attribute to hypermedia systems is that they

have the potential to help students learn the same information (or more) in less time. Our

experience has been just the opposite. We did not place restrictions on the amount of time

students could spend in any facet of the experiments described in this section, unlike previous

researchers who limited the amount of time subjects could spend interacting with the learning

media involved in their research. We did not keep strict measures on the amount of time by

individual, but we did keep anecdotal figures as groups completed the experiments. We

observed that the Text groups of Experiment I took less time (~20 minutes) than the AV groups

(-35 minutes); in Experiment II the Text group took a bit longer (-30 minutes) because of the

exercises. The lecture in Experiment in took about the same amount of time as the AV session

(-60 minutes). While this data could be taken as a strike against hypermedia, we suggest a

different interpretation: subjects found the hypermedia presentation more engaging and

motivating, and either didn't notice the time passing or found the added time rewarding enough

to continue anyway. We informally asked several students how much time they used the HalVis

software, and in every case, their recall was at least 15 minutes less than the time they actually

spent using the system. Hence, students spent more time interacting with the visualizations, but

didn't notice. Most instructors would declare any teaching approach a success that motivates

students to spend additional time with a subject because they want to, not because they need to.

113

4.4. CRITICISMS

The results reported in this chapter are among the first to provide statistical support of the

use of animations to enhance learning algorithms. This is encouraging and exciting, but should

be kept in perspective. In this section, we cast a critical eye to our work and present some of the

issues that must be considered to keep our results in proper context, and to help guide future

research.

• Design bias: The same group designed the HalVis system, the learning objectives, the pre-

and post-tests and performed the grading. While we attempted to be fair and unbiased at all

stages of research, we recognize that using independent proctors, graders and designers could

have helped address this criticism.

• Inauthentic setting: The setting for conducting the experiments was not 'authentic,' which

means our results might not be replicated if HalVis was used to supplement or replace typical

courseware. Even though these experiments were conducted in classrooms and labs in the

Computer Science department, all the subjects involved in our experiments understood they

were participating in research. The sequence of grouping the students, issuing demographic

surveys, pre-tests, post-tests and satisfaction surveys is not consistent with typical

courseware. It is likely that many subjects allowed extra tolerance, patience and effort that

might not be the case in day-to-day use. Of course, the opposite is also possible, which is that

the students understood that only their participation and not their results was being

considered for grading and credit, and performed only the minimum necessary to get by. At

any rate, the research setting did not represent the envisioned used of algorithm visualization

as a teaching tool, and the results reported here might not be replicated in authentic use.

114

• Group Size: Generally, as group sizes increase in statistical research, the effects of variation

are decreased and a more representative population average can be reported. Our work

involved groups with as few as nine and as many as twenty subjects, which are smaller than

ideal for making statistical comparisons. Having more subjects would have added to the

confidence and reliability of the results.

• Limited Algorithmic Domain: Our experiments involved a limited number of algorithms that

covered selectected sorting, merging and graphing problems. In these limited and relatively

simple domains, the HalVis framework demonstrated encouraging results. However, it is fair

to ask if our results would be replicated for other, possibly more complicated algorithms.

4.5. SUMMARY OF EMPIRICAL COMPARISONS

The following summarizes conclusions from the five experiments discussed in this chapter:

• Advanced as well as novice students perform better in answering conceptual and

procedural questions about certain fundamental algorithms after interacting with the

HalVis hypermedia algorithm visualization framework than after studying explanations

found in typical textbooks on algorithms.

• The HalVis hypermedia algorithm visualizations appear to be as effective a learning aid

for novice students to learn about selected algorithms as learning from carefully crafted

textual and diagrammatic explanations combined with solving a set of problems.

• Novice students gain more knowledge after interacting with the HalVis hypermedia

algorithm visualization framework than after hearing a typical classroom lecture.

Furthermore, lecture and visualizations supplementing each other provide the best

learning scenario, and the order of presentation does not seem to influence the overall

extent of learning.

115

• It appears that interactive hypermedia algorithm visualizations are more effective when

prior knowledge is limited. However, students with prior knowledge from conventional

instruction also derive a significant learning benefit from algorithm visualizations.

• Individual differences in learning from algorithm visualizations exist. These differences

may be compensated by the use of multiple modes of instruction. This argues for

hypermedia algorithm visualizations supplementing, rather than replacing, traditional

instructional methods.

• Finally, the framework for algorithm visualization design that HalVis exemplifies

appears to be a more effective teaching tool than previous algorithm animation designs.

The general conclusion is that interactive hypermedia algorithm visualizations modeled

after the HalVis framework (a system in which animations are embedded within a knowledge and

context providing hypermedia environment) can provide significant benefits to learners as an

educational medium for self-directed and self-paced learning, either by itself or even more so in

combination with other instructional media.

There are a number of possible reasons for this. First, in comparison with previous

animation systems that only presented animations with some textual feedback, HalVis allows the

student to learn incrementally by starting from a real world analogy and transitioning to the

algorithm itself. Second, the hypermedia structure allows a student access to fundamental

building blocks of algorithmic knowledge in-context and on-demand. Third, a learning

objective-based design approach and the hypermedia structure surrounding animations have

allowed us to divide dynamic information into manageable and meaningful pieces, and present

each piece using animation chunks. This makes it easier for students to pause and reflect, repeat,

or access other relevant information through hyperlinks while watching animations. Furthermore,

116

animation chunks are presented in synchrony with other representations in other media. These

novel features, we believe, result in the dynamic information being conveyed better in context,

and therefore in a more comprehensible fashion. Fourth, rather than providing just one view of

an animation as has been the typical approach, HalVis presents three kinds of animations

(analogical, micro-level and macro-level), so that the macro behavior is seen after the micro

behavior is seen and understood, both following an analogical introduction to the algorithm.

Fifth, our framework allows students to actively engage themselves in the visualization by

changing data inputs, making performance predictions, and reflecting on questions that pop up in

context, all contributing to better learning.

The following chapters discuss a series of ablation experiments designed to measure the

differential contributions to learning of these various features and subsequent refinements to the

HalVis framework.

5. ABLATION STUDIES (WHAT MADE A DIFFERENCE?)

The previous chapter focused on comparing a richly endowed hypermedia system with

other learning media to validate the hypothesis that animation-embedded software could lead to

the effective learning results that eluded former researchers. This chapter describes a series of

experiments that were conducted to focus on the specific components that lead to the successful

results we observed in Experiments I through IV. Three experiments were devised to probe

specific aspects of the HalVis framework by comparing a control group using a fully-enabled

version with test groups that had one or more features or views disabled. In Experiment V, we

wanted insight on the impact of removing features such as chunking, questioning, and the

animated pseudocode. Experiment VI tested the removal of a single view and Experiment VII

explored the impact of removing two views. Table 5.1 indicates the features and views that were

removed from each group.

117

118

Ablation of
Features

Ablation of Views

Experiment V
Groups

Experiment VI
Groups

Experiment VII
Groups

1 2 3 4 1 2 | 3 4 1 1 2 3 1 4
Conceptual View w/analogy V 1 r 1
Detailed View 1 • Chunking

. ■ ■

• Tickler Questions r—

It. ■

• Animated pseudocode
5»

• Animation
t

• User selectable input 151
• Contextual messages spa Kiii

• Execution variables
i ■

>. -

Populated View
IB $■' *

.
• Predictions j' •■ w- .

• Animation p—- ■

\.v

• User selectable input ■ ■ ,

Fundamentals Screens

Description Screen w/pseudocode

Questions Screen M
Table 5.1. / kblat on E jcpei •imer itSu mm, ary

im

5.1. EXPERIMENT V: ABLATION OF FEATURES

This experiment was designed to isolate selected features from our algorithr

visualization framework to measure their respective impact and effectiveness. Of the unique

features incorporated in our framework, the three we identified as the most likely to have an

impact were chunking, animated pseudocode in the Detailed View, and use of questions. We

119

believed that the contextual explanations and the user's ability to interact with the input data for

the animation were also important, but these features have already been empirically identified as

significant (by Lawrence, 1993) so we did not pursue testing them. Our hypothesis was that each

of these features, when removed from the overall framework, would lead to less effective

learning performance by students compared to a control group receiving the full HalVis

framework.

Subjects

This experiment involved 40 undergraduate computer science students enrolled in a third

year algorithm analysis course at Auburn University. Like the experiments described in the

previous section, participants were ranked based on their course performance up through mid-

term grades, GPA, and ACT/SAT scores, and creating matched groups by taking the top four

subjects from the ranked list and randomly assigning them to one of the four following groups:

• Control Group: This group would interact with a fully enabled version of HalVis.

• No-Chunking Group: This group would interact with a version of HalVis for which the

chunking capability was removed.

• No-Pseudocode Group: This group would interact with a version of HalVis for which the

pseudocode pane on the Detailed View was removed.

• No-Questions Group: This group would interact with a version of HalVis for which all

questions were removed.

Students were given extra credit for participating. The group demographics are shown in

Table 5.2.

120

Group Name Number of

Subjects

ACT

Average

GPA

Average

Full (control) Group 10 26 3.3

No-Chunking 10 28 3.1

No-Pseudocode 10 28 3.2

No-Questions 10 28 3.1

Table 5.2. Experiment V Demographic Summary

Materials

Each of the groups interacted with the HalVis framework to learn the Quicksort

algorithm. Selected features of the HalVis system were disabled or removed to facilitate each of

the experimental groups. The Control group received a version of HalVis with all features

enabled. The No-Chunking group interacted with a version of HalVis for which the chunking

feature was disabled in the Detailed View. This meant the animation would proceed to

completion without any pauses. The user could control the speed of the animation, however.

The No-Animated Pseudocode Group interacted with a version of HalVis in which the

pseudocode window was removed in the Detailed View. The No-Questions Group interacted

with a version of HalVis in which all forms of tickler and feedback questions were disabled.

None of the groups received any additional handout information, just the version of HalVis

associated with their experimental group.

A pre-test/post-test combination measured individual learning performance with

questions that probed conceptual and procedural knowledge about the algorithm. Students were

tested on their ability to recognize and reorder pseudocode descriptions of algorithms, mentally

121

simulate algorithmic operations, and predict resulting data structure changes. The pre-test

measured prior knowledge about the algorithms and the post-test results measured changes

resulting from the experimental conditions.

Procedure

As with the previous experiments, we timed the experiment to precede the course

lectures that covered the subject of sorting algorithms. Towards the end of the quarter,

participants were asked to complete a pre-test that measured their prior knowledge about the

Quicksort algorithm. In addition to providing a baseline against which to compare subsequent

changes, the pre-test results also helped us verify that the four groups were evenly balanced.

In the following week, the groups met in the same public computer laboratory on

campus, but at different times. Each group received a brief, navigation-only orientation to the

version of HalVis they were to use, then were assigned to a computer and instructed to interact

with the visualization until they felt they understood the algorithm. The computers were

Pentium-class systems with 15 inch color monitors. There was no time limit for any group, so

when each subject indicated he/she was done, he/she was given a post-test to measure knowledge

improvement. No student took more than 60 minutes for the entire experiment.

Results

The average group improvement is shown in Figure 5.1, and summarized in more

detailed box plots in Figure 5.2. As we anticipated, the group that showed the greatest

improvement was the group that interacted with the full version of HalVis, improving 55%. The

group that improved the least was the group that interacted with the version of HalVis for which

the Chunking capability was removed; their scores did improve, but only 35% which was the

poorest of the four groups. The group that did not have any questions, predictions or ticklers

improved 44%, and the group that lacked the window showing the highlighted pseudocode in the

122

Detailed View improved a surprising 51%. None of these results were statistically significant as

shown in Table 5.3. However, there is a positive trend indicating the value of each of the ablated

features.

Improvement by Group
(Features Removed)

No Chunking 135%

|44% No Questions

No Pseudocode 151%

-

Full ■ 55%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Score

Figure 5.1. Improvement by Group for Experiment V (Features Removed)

123

r—
Experiment V Comparison

PreTest-FullGp

PostTest-FullGp
1 r—

16%

1 1
71%

PreTest-NoCh
— 1

PostTest-NoCh 30%

1 1 1 1 1 1
65%

PreTest-NoPs

PostTest-NoPs
|

18%
II
69%

PreTest-NoQ

PostTest-NoQ

I I 1 1 1 1
20%

1 1 —
64%

1 1
0 25

1 1
50 75

1
100%

Figure 5.2. Experiment V Box Plots

Statistical Summary

Group Average
Improvement

Variance

Full 55% 13.8%
NoChunking 35% 5.7%
NoPseudocode 51% 5.0%
NoQuestions 44% 11.0%

F(3,37) 0.88
P p < 0.46

Table 5.3. Statistical Summary for Experiment V (Features Removed)

124

Discussion

An interesting trend emerges from the navigational and usage data analysis. From the

navigational logs captured by the HalVis software, we noted that the No-Pseudocode group not

only spent the most time with the system (Figure 5.3), they also navigated back and forth

between the Description screen that contained the pseudocode and the Detailed View that

presented the visualization with a frequency three times that of the other groups. Several

members in the group commented on how inconvenient such a design 'oversight' made using the

software. It is also interesting to note that the No-Questions group spent an average of four

minutes less interacting with the system, suggesting that the presence of questions throughout the

system increases the interaction which is a positive outcome that might account for a portion of

the improved performance observed in the control group. Finally, the No-Chunking group spent

the least amount of time using the system (26 minutes) and produced the lowest improvement

scores on the performance tests (35%). Yet, this group ran the animations about 40% more than

their counterparts in the other groups. Even though they used the system more, without

chunking, they got less out of the system for their efforts. Furthermore, we did not register any

complaints or comments from this group that would indicate a sense of giving up out of

frustration—these subjects felt they knew the material as well as their counterparts when in fact

they did not.

125

Time/Performance Comparison
(Features Removed)

40

35

30

25 4-

0)
E 20

15

10

5

0

,55%

-- 50%

60%

UTime (minutes)

|# Animations Run

- Score

NoChunking NoPseudo NoQuestions

Group

Figure 5.3. Time/Performance Comparison for Experiment V (Features Removed)

Figure 5.4 shows the number of times subjects in each group invoked the animation

sequence in the Detailed View and the Populated View. The most notable trend is that the No-

Chunking group ran the animations more than all the other groups. Without chunking, the

Detailed View animations would generally run to completion in less time because the semantic

pauses would not slow the execution. In the groups with Chunking enabled, we observed

subjects taking advantage of the pauses to examine, probe and correlate the information in the

various panes on the screen. Without the system-inserted pauses, the subjects apparently did not

feel they were learning the subtle nuances of the algorithm and attempted to make up for this

deficit by rerunning the animation multiple times.

126

Usage Summary
(Features Removed)

4Gr4- -• 10.2

5.1 5.1

Ü
HDVAnimations

I PVAnimations

-TotalAnimations

Full NoChunking NoPseudo NoQuestions

Groups

Figure 5.4. Animation Execution Summary for Experiment V

The lack of statistical significance between the improvement levels of the groups was a

minor disappointment. We feel that the small group sizes contributed to this outcome. This

outcome could also be an indicator that each of the features that were ablated, in a small and

measurable way, contributes to better performance but that good performance is not exclusively

dependant on any single feature by itself. In other words, a well designed hypermedia

framework allows users to circumvent minor shortcomings by drawing from other related

information in the system. We noted this in the No-Chunking group where they ran the

animations more times to make up for the lack of pauses, and in the No-Pseudocode group as

they navigated back and forth to the screen that possessed the information they felt they needed

to understand the algorithm and meet the learning objectives.

127

5.2. EXPERIMENT VI: ONE VIEW REMOVED

This experiment was designed to elide one of the three views (the Conceptual View, the

Detailed View, and the Populated View), leaving the subject with the other two as a means of

measuring the contribution each view makes to learning effectiveness. Our hypothesis was that

the most important view was the Detailed View and that it would prove to be the most valuable

because of the amount of information and interaction it provided. Therefore, the groups that

interacted with this view would outperform the group that was denied this view. We believed

that the Populated View would follow in significance and felt that the Conceptual View would

lag well behind the other two.

Subjects

This experiment involved 32 undergraduate computer science students enrolled in a third year

algorithm analysis course at Auburn University. Students were given extra credit for

participating. Like the experiments described in the previous section, participants were ranked

based on GPA and ACT/SAT scores, and randomly assigned to the following matched groups as

indicated below and summarized in Table 5.4:

• Full (control) Group: This group was referred to as the CDP group, which stands for the

views they would have access to in the HalVis framework (C=Conceptual View;

D=Detailed View; P=Populated View). This group would interact with a fully-enabled

version of HalVis.

• No-Conceptual-View Group: This group was referred to as the DP group. This group

would receive a version of HalVis in which the Conceptual View was disabled. The key

views this group used were the Detailed and Populated Views.

128

• No-Detailed-View Group: This group was referred to as the CP group. This group

would interact with a version of HalVis in which the Detailed View was disabled. The

key views this group used were the Conceptual and Populated Views.

• No-Populated-View Group: This group was referred to as the CD group. This group

would receive a version of HalVis in which the Populated View was disabled. The key

views this group used were the Conceptual and Detailed Views.

Group Name Number of

Subjects

ACT

Average

GPA

Average

Full (control) Group: "CDP" 7 28.4 2.8

No-Conceptual-View: "DP" 8 28.6 2.9

No-Detailed-View: "CP" 9 28.9 2.8

No-Populated-View: "CD" 8 26.3 3.1

Table 5.4. Experiment VI Demographic Summary

Materials

Each of the groups interacted with the HalVis system to learn the Quicksort algorithm.

We constructed a different version of the HalVis system, with the selected view removed, for

each of the experimental groups. The CDP group received a version of HalVis with all features

enabled. The DP group interacted with a version of HalVis for which the Conceptual View was

removed. The CP Group interacted with a version of HalVis in which the Detailed View was

removed. The DP Group interacted with a version of HalVis in which the Populated View was

removed. None of the groups received any additional handout information, just the version of

HalVis associated with their experimental group.

129

A pre-test/post-test combination measured individual learning performance with

questions that probed conceptual and procedural knowledge about the algorithm. Students were

tested on their ability to recognize and reorder pseudocode descriptions of algorithms, mentally

simulate algorithmic operations, and predict resulting data structure changes. The pre-test

measured prior knowledge about the algorithms and the post-test results measured changes

resulting from the experimental conditions.

Groups were exposed to versions of HalVis as indicated in Table 5.5.

CDP Group
(Control)

CD Group DP Group CP Group

Conceptual View Y Y - Y

Detailed View Y Y Y -

Populated View Y - Y Y

Description Screen Y Y Y Y

Questions Module Y Y Y Y

Table 5.5. Views Available to Groups for Experiment VI (1-View Removed)

Procedures

As with the previous experiments, we scheduled the experiment to precede the course

lectures that covered the subject of sort algorithms. Towards the end of the quarter, participants

were asked to complete a pre-test that measured their prior knowledge about the Quicksort

algorithm. In addition to providing a baseline against which to compare subsequent changes, the

pre-test results also helped us verify that the groups were evenly balanced.

In the following week, the groups met in the same public computer laboratory on

campus, but at different times. Each group received a brief, navigation-only orientation to the

130

version of HalVis they were to use, then were assigned to a computer and instructed to interact

with the visualization until they felt they understood the algorithm. The computers were

Pentium-class systems with 15 inch color monitors. We imposed no time limits on any group, so

when each subject indicated he/she was done, he/she was given a post-test to measure knowledge

improvement. No student took more than 60 minutes for the entire experiment.

Results

Figure 5.5 shows the average group improvement, and Figure 5.6 summarized the results

as box plots showing the average (the dark vertical bar), the 25-75% quartile range (the box), and

the range of values (the lines extending from the quartile box). As expected, the group that

received all three HalVis views performed the best. However, examining the results reveals an

interesting observation—the impact of the Conceptual View. We expected that the final order of

the groups would be CDP, DP, CD, then CP, simply because the Detailed View portrays so much

of the inner workings of the algorithm, and the Populated View shows the macro behavior. Our

results did not confirm this hypothesis. Instead, contrary to our expectations, the groups that

performed best were not the ones exposed to the Detailed View but rather the groups that

interacted with the Conceptual View. The improvement for the groups that received the

Conceptual View with any other view combination more than tripled the improvement of the DP

group.

131

Improvement by Group
(1-View Removed)

DP ^H ̂ ■§21%

a CP ^H ̂ ^^^■i^^H 45%
3 ^^^^

Ö CD ■■ ̂ ^^^^■■■146%

CDP ^H ^■■^^^^^^^H 55%

0%
1 1 1

20% 40% 60%

Score

80% 100%

Figure 5.5. Improvement by Group for Experiment VI (1-View Removed)

r
Experiment VI Comparison

PreTest-DP
I 1 1

3 17%
PostTest-D

|
38%

PreTest-CP

PostTest-CP
|

13% 1 1
58%

PreTest-CD

PostTest-CD

1 1

-H
12%

■ I
II

58%

PreTest-CDP

PostTest-CDP
— II

16%
1 —

71%

L

I I
0 25

I I
50 75

I
100%

Figure 5.6. Experiment VI Box Plots

132

Figure 5.7 shows the amount of time subjects interacted with the HalVis software and

confirms our expectation that subjects provided with the Detailed View would spend more time

with the system, but the differences are not large.

Time/Performance Comparison
(1-View Removed)

t\J -

.55% . .
35- 37

30-
34 47%

30
,45% 33

25-

0)
£ 20- ..
l-

15- 12 \ ,27%

10- ■ 8

5 -

0 - 1 5

1, ■ L

60%

50%

--40% o
tn

30% gj

>

20% §.
E

10%

0%

I i Time (minutes)

^■Animations run

A Improvement °/>

CDP CD CP

Group

DP

Figure 5.7. Time/Performance Comparison for Experiment VI (1-View Removed)

Figure 5.8 shows the average responses for each of the questions by group. Interestingly,

there are four questions in which the CD group outperformed the CDP group. These questions

dealt with aggregate performance concepts such as impact of the pivot selection and order of the

data on overall results. In none of the questions did the DP group excel. Hence, the differences

between the CD and CP group shed some insight into the different ways in which the Detailed

View and the Populated View assist learners.

133

CO
0)
CO c
o a
CO
0)

DC
4)
o>
(S
i.
0)

5

120% i

100% ■

80% ■

60% ■

40% ■

20% -

0% -

Group/Question Comparison
(1-View Removed)

 x tf

"*•*•■'

'"> O
•••X-.

S^^.y —x

q1 q2 q3a q3b q4a q4b q5a q5b q6a q6b q6c q6d q7a q7b

—•—CDP 100% 100% 86% 71% 57% 43% 43% 71% 86% 43% 29% 71% 100% 100%

• rn 88% 75% 88% 63% 63% 19% 50% 38% 75% 31% 25% 75% 88% 75%

A CP 78% 67% 100% 56% 78% 28% 67% 11% 61% 61% 0% 56% 89% 72%

---X---DP 63% 50% 63% 38% 38% 19% 13% 13% 31% 25% 13% 63% 38% 31%

questions

Figure 5.8. Experiment VI Comparison of Question Responses

Table 5.6 shows a partial statistical summary of the experiment, presenting data for

comparisons between groups that were significant or noteworthy. The data was statistically

significant for groups that received the Conceptual View in any combination, compared against

the DP group that did not. On the other hand, statistical significance was not detected in the

comparison between the control group and the CP group, although there is a slightly positive

trend favoring the control group.

Statistical Summary

Statistically Significant Pairings Nonsignificant

CDP 55% CP 45% CD 47% CDP 55%

DP 21% DP 21% DP 21% CP 45%

F(1,14) 16.71 F(1,16) 8.99 F(1,15) 7.16 F(1,15) 1.45

P p < 0.001 P p < 0.01 P p< 0.018 P p < 0.25

Table 5.6. Statistical Summary for Experiment VI (1 View Removed)

134

Discussion

Perhaps the most noteworthy observation from the results of this 2-view ablation study

was the effect of the Conceptual View in priming the learning of information presented in

subsequent views. The groups that interacted with the Conceptual View in any combination with

other views performed better than the group that lacked the Conceptual View. Comparing the

difference between the number of times the animations were executed (Figure 5.9), it appears

that having the Conceptual View motivated the CDP group to invoke the Detailed View

animations nearly twice as many times, and the Populated View animation nearly three times

more than the DP group. The impact of the Conceptual View was examined further in the next

study that singled each view out.

Usage Summary
(1-View Removed)

UDVAnimations

I PVAnimations

-Total

Figure 5.9. Animation Execution Summary for Experiment VI (1-View Removed)

135

5.3. EXPERIMENT VII: TWO VIEWS REMOVED

This experiment was designed to isolate each of the three views of our algorithm

visualization framework to measure their respective impact and effectiveness. Our hypothesis

was that each view was important to the framework but that the Detailed View would prove to be

the single most valuable because of the amount of information and interaction it provided. We

were uncertain how measurable the impact of the other views by themselves would be, since

neither the Populated View not the Conceptual View contained the volume or depth of

information available in the Detailed View.

Subjects

This experiment involved 27 undergraduate computer science students enrolled in a third

year algorithm analysis course at Auburn University. Students were given extra credit for

participating. Like the experiments described in the previous section, participants were ranked

based on GPA and ACT/SAT scores, and randomly assigned to the following matched groups:

• Full (control) Group: This group received a fully-enabled version of HalVis and are

referred to here as the CDP group (C = Conceptual View, D = Detailed View, P =

Populated View).

• Conceptual-View-Only Group: This group interacted with a version of HalVis in which

both the Detailed and Populated Views were disabled. We refer to them in this section

as the CV (Conceptual View) group

• Detailed-View-Only Group: This group used a version of HalVis in which the

Conceptual View and the Populated View were inaccessible. They are called the DV

group.

136

• Populated-View-Only Group: This group used a version of HalVis with the Conceptual

and Detailed Views removed. They are referred to here as the PV group

Table 5.7 shows the demographics of the groups involved in Experiment VII.

Group Name Number of

Subjects

ACT

Average

GPA

Average

Full (control) Group: "CDP" 6 28.5 2.8

No-Conceptual-View: "C" 7 27.6 2.8

No-Detailed-View: "D" 7 27.8 2.7

No-Populated-View: "P" 7 25.3 3.0

Table 5.7. Experiment VII Demographic Summary

Materials

Each of the groups interacted with the HalVis framework to learn Dijkstra's Shortest

Path algorithm. Four versions of the HalVis system were created. The core information was the

same in each version. The difference was in the number of screens that users were allowed to

see, as indicated in Table 5.8. In effect, we ablated away two views and only provided subjects

with a single view and limited supporting information. All groups were allowed to interact with

the Fundamentals module and the description screen that contained a brief description of the

algorithm and presented its basic pseudocode. All groups received the feedback questions.

Otherwise, the views were disabled as indicated below.

137

CDP Group
(Control)

CV Group DV Group PV Group

Conceptual View Y Y - -

Detailed View Y - Y -

Populated View Y - - Y

Description Screen Y Y Y Y

Questions Module Y Y Y Y

Table 5.8. Views accessible to groups for Experiment VII (2-Views Removed)

A pre-test/post-test combination measured individual learning performance with

questions that probed conceptual and procedural knowledge about the algorithm. Students were

tested on their ability to recognize and reorder pseudocode descriptions of algorithms, mentally

simulate algorithmic operations, and predict resulting data structure changes. The pre-test

measured prior knowledge about the algorithms and the post-test measured changes resulting

from the experimental conditions.

Procedure

As with the previous experiments, we timed the experiment to precede the course

lectures that covered the subject of graph algorithms. Participants were asked to complete a pre-

test that measured their prior knowledge about the Shortest Path algorithm. In addition to

providing a baseline against which to compare subsequent changes, the pre-test results also

helped verify that the four groups were balanced.

In the following week, the groups met in the same public computer laboratory on

campus, but at different times. Each group received a brief, navigation-only orientation to the

version of HalVis they were to use, then were assigned to a computer and instructed to interact

with the visualization until they felt they understood the algorithm. The computers were

138

Pentium-class systems with 15 inch color monitors. There was no time limit imposed on any

group, so when each subject indicated he/she was done, he/she was given a post-test to measure

knowledge improvement. No student took more than 60 minutes for the entire experiment.

Results

Figure 5.10 shows the average improvements observed in each of the groups. As

expected, the CDP group outperformed the others, followed closely by the DV group.

Interestingly, the CV group outperformed the PV group by 21%. Equally interesting is how well

the CV group did with the limited amount of information that they received.

Performance Comparison
(2-Views Removed)

S

|87%

Conceptual View Only B57%

Detailed View Only (77%

Populated View Only 136%

AllViews

T 1 1 1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Score

Figure 5.10. Improvement by Group for Experiment VII (2-Views Removed)

139

The box plots in Figure 5.11 provide deeper details into each group's performance, indicating the

average (the dark vertical bar), the 25-75% quartile range (the box) and the total range of values

(the lines extending from the quartile boxes). The CDP group shows the tightest and most

normal-looking plot, mimicked closely by the DV group plot. The box plots for the CV and PV

groups indicate a much wider range of post-test values.

Experiment VII Comparison

PreTest-CV

9%

PreTestDV
ED—

4%

PreTest-PV

19%

PreTest-CDP

2%

25

PostTest-CV

65%

PostTest-DV

80%

PostTest-PV

55%

PostTest-CDP

89%

50 75 100%

Figure 5.11. Experiment VII Box Plots

45

40 +

35

«T 30 <u
1 25 +

fao +

10

5 +

0

41

140

Time/Performance Comparison
(2-Views Removed)

--90%

--80%

70% g

--60% w

100%

CDP Gp DVOnly CVOnly

Group

PVOnly

Figure 5.12. Time/Performance Comparison for Experiment VII (2-Views Removed)

Figure 5.12 shows the relationship between performance, number of PV and/or DV

animations executed, and the amount of time users spent with the various version of the software.

We were not surprised with the amount of time the different groups used to interact with HalVis.

The most interaction occurs in the Detailed View, and the time figures for the CDP and DV

groups reflect this design attribute. The group spending the least amount of time was the CV

group, which did not surprise us, yet we find it interesting that they spent more time than we

expected they would, given the limited amount of information and interaction provided in the

Conceptual View. While it appears there is a loose correlation between group performance,

amount of time spent using the system and the number of animations that the group executed on

the average for the CDP, DV and CV groups, this trend is not present in the PV group. Despite

running the animations nearly the same number of times as the CDP group and 50% more times

141

than the DV group, the PV group achieved the lowest performance improvement. Based on

animation executions alone, one could raise the question of the effectiveness of DV animations

over PV animations. Also striking is the level of improvement of the CV group that viewed no

animations, just interacted with an real-world analogy and simulation.

142

Figure 5.13 shows a detailed breakout of the amount of time subjects spent in each of the

informational screens and views of the HalVis framework. As anticipated, the CV group spent

the least amount of time and the CDP group spent the greatest amount of time interacting with

the system. Furthermore, these data support the findings in the previous experiment that users

tend to compensate for information that is omitted by spending time in related screens, as seen in

the higher times for the DV group in the Detailed View, and the PV group in the Populated

View.

(0
CO

£
E,
0)
E
H

24:00

18:00

12:00

6:00

0:00

Time Allocation Comparison
(2-views Removed)

AHViews DVOnly
1

CVOnly PVOnly

□ ConceptualView 5:55 0:00 8:00 0:00

I Description 3:58 2:44 4:53 5:08

D DetailedView 14:50 22:57 0:00 0:00

B PopulatedView 6:14 0:00 0:00 11:50

H Questions 5:32 8:38 5:27 7:02

Figure 5.13. Experiment VII Detailed Time Data for Each Screen

143

Figure 5.14 shows how the groups performed on each of the questions. It is interesting

that the PV group performed much lower than the other groups except on the question that delves

into assigning weights to edges (Q7) to force a particular Shortest Path sequence.

Question Comparison
(2-Views Removed)

o
u

S
01

3

120% -,

100% •

\ \
/-■*"-

\ '."
••*'

.- >- .* ^^ f^ ~^2.

v ^^ 80% ■
v -4T \

\ ^J>
> v>

60% • \ .-** V*

V
.A v'

40% ■

20% •

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

■ All-Views 100% 100% 100% 100% 100% 86% 71% 86% 100% 90% 100% 93% 93% 86% 71%

--^--DV-Only 86% 100% 100% 86% 100% 57% 57% 43% 86% 76% 100% 86% 100% 57% 79%

...*... CV-Only 79% 71% 100% 57% 71% 43% 57% 43% 71% 81% 100% 36% 64% 14% 64%

43% 57% 57% 71% 71% 14% 86% 43% 43% 62% 71% 57% 50% 14% 64%

Question Number

Figure 5.14. Experiment VII Comparison of Question Responses

Table 5.9 summarizes the various statistical comparisons between the control group and

groups with individual views (upper portion of the table), and between groups with individual

views. Except for the CDP/D comparison, the results are all significant.

Statistical Summary

CDP 0.87 CDP 0.87 CDP 0.87
C 0.57 D 0.77 P 0.36
F(1.11) 14.51 R1.11) 2.55 F(1,11) 51.82
P p<0.003 P p<0.14 P p<0.00001

C 0.57 D 0.77 C 0.57
D 0.77 P 0.36 P 0.36
F0.12) 5.82 F(1,12) 28.29 F(1.12) 5.35
P p<0.033 P p<0.0002 P p<0.039

rable5.9. Statist cal Summary for Experiment VII (2 -Views Removed

144

Discussion

This experiment indicates how much impact each of the views have on learning

effectiveness. The importance of the Detailed View was confirmed, as was the value of the

Conceptual View. We were somewhat surprised at the level of improvement observed in the

group that only interacted with the Conceptual View, and this suggests that having a good

analogy can produce surprisingly positive results. The performance of the Populated View group

lagged behind the others. Yet in each of the experiments, the animations on this view were

executed about the same number of times. Perhaps this serves as confirmation that some

animations are merely 'candy for the eyes' in that they are entertaining to observe but seem to

obscure the details, depth and mechanisms needed to engage the learner's mind. It should also

be noted that the animation in the Populated View closely resembles algorithm animations

created in previous research.

5.4. SUMMARY OF ABLATION EXPERIMENTS

This series of experiments was conducted to explore the components of the framework

developed in this research that led to the significant results in learning effectiveness observed in

Chapter 4. The first experiment removed features that were unique to our design and which we

believed contributed to learning effectiveness. While the performance differences between the

groups in this study were not statistically significant, there was a noticeable effect when each

feature was removed. The absence of a feature did not lead to a linear decrease in performance.

The effect manifested itself as decreased performance on the post-test and also as altered user

behavior. Users appeared to be able to glean the information they needed by exploiting other

sources in the system. For example, one group made up for the lack of chunking by rerunning

145

the animation over and over, and the group that lacked collocated pseudocode on the Detailed

View flipped back and forth between a screen that did show the pseudocode.

The second experiment explored the effect of removing a single view from the trio that form

the core of the framework. Our initial expectations were not validated. We were surprised to

find how much better the groups that interacted with the Conceptual View performed despite the

greater amount of information portrayed in the Detailed and Populated Views. Probing this issue

further involved the final experiment that provided a single view to the groups and measured

their performance. Here, the value of the Detailed View was confirmed, but so was the

impressive contribution of the Conceptual View. Interestingly, the students generally

commented most favorably about the animations in the Populated View even though their

performance was poorest in both sets of experiments. They thought they were learning more

from the Populated View than was actually the case.

These results lead to several observations:

• The Conceptual View is important. While we initially believed that the analogy/real-

world example was a minor educational addition and feature of our framework, it

appears to have a pronounced effect in peaking student interest and priming them for

learning from subsequent views of greater detail. We were not able to test our belief that

using analogies might also contribute to long term retention.

• The Detailed View is important, but needs to be presented in context for the student to

get the greatest potential from it. Providing the student with appropriate information

makes the visualization more effective. Removing the pseudocode was not only an

inconvenience, it led to poorer performance. The importance of user-provided data sets

as inputs to the algorithms is not as clear, since very few users took advantage of this

feature. Fully interactive algorithm animations may not be as necessary as originally

146

thought, and perhaps canned data sets are sufficient to illustrate representative algorithm

behaviors to students.

• Questions are useful but not critical for effectiveness. Even though the subjects that

were denied access to tickler questions in the Detailed View, predictions in the

Populated View and the feedback-style queries in the Questions Screen did not perform

significantly worse than subjects who received questions, we did note a decrease in their

test scores and believe they are important to an educational system like HalVis.

• Chunking is important in helping students pace their learning and absorbing the

subtleties of the algorithm. Even the best work-arounds that students attempted could

not make up for the absence of this feature.

• The Populated View is less useful than originally thought. It is one of the most

entertaining to watch, but appears to yield the least amount of understanding.

Of the components mentioned in Chapter 3, these experiments tested and provide valuable

insight to the surprising potential of Bridging Analogies, Multiple Views, Semantic Chunking,

and Purposeful Interaction, using a novel framework built using Multimodal Presentation

techniques and the algorithm lessons were based on sound learning objectives. The next chapter

investigates ways of disseminating the tools we have developed and empirically tested.

6. EXTENDING THE FRAMEWORK TO THE INTERNET

This section describes our efforts to make these results and products available for others

to use for testing and research. First we describe how to access and execute the HalVis system

which was used for the experiments reported in Chapters 4 and 5. Then we discuss the

limitations of the current HalVis environment and describe our efforts to replicate the framework

discussed in Chapter 3 using another algorithm animation system that addresses some of the

HalVis shortcomings.

6.1. ACCESSING THE HALVIS PROTOTYPE

The HalVis prototype system is available for public downloading at

http://www.eng.auburn.edu/department/cse/research/vi3rg. The self-extracting program creates a

HalVis directory on the target system's hard drive and installs the runtime execution files needed

to execute. This consists of the HalVis program and a group of runtime executable files. The

system was developed using Asymetrix Toolbook, for which the runtime executable files are

available royalty-free to the general public. HalVis works with the following versions of

Microsoft Windows: 3.0, 3.1, 95, 98, and NT. Users will find the system fully functional and

programmed with the six algorithms described in Appendix B. Unfortunately, extending the

HalVis program to incorporate additional algorithm visualizations is not easily accomplished.

147

148

6.2. HAL VIS LIMITATIONS

HalVis was designed as a dedicated system (see discussion in Chapter 2.2.4) similar to

AACE, XSortLab and AlgoNet. The design philosophy behind HalVis was to use rapid

prototyping techniques to create, test and validate the novel features of the framework described

in Chapter 3. As a dedicated system, HalVis is not easily user-modifiable. Programming is

required of researchers or instructors wanting to alter existing HalVis visualizations or to create

new ones. This means having access to a licensed version of Asymmetrix Toolbook, and

expertise in the Toolbook authoring language (called OpenScript). We offer and provide the

already-coded visualizations and templates as examples to help. But, admittedly, this is a

daunting task to a skilled programmer, and nearly unthinkable for the student wishing to create

visualizations of his own.

Another limitation to the HalVis approach is it is only available for Microsoft Windows

environment. While this is a very popular and prevalent operating environment, it does not

support widespread, platform-independent execution. For these reasons, we investigated

techniques to implement the HalVis framework using other tools.

6.3. TOWARDS A GENERAL AUTHORING ENVIRONMENT

We envision the HalVis framework being implemented in a way that supports Internet

access and execution, and written in a way that allows students to interact with already-prepared

visualizations as well as supporting a more constructive approach of helping students create their

own visualizations. To make the components of the framework available to a wider range of

users desiring a broader delivery platform such as the Internet, a tool other than Asymmetrix

Toolbook must be used. The rich properties of HTML and Java make porting some of the

features of our framework possible. One shortcoming of the HalVis prototype was that it did not

149

support user-developed animations without considerable knowledge and expertise in the

Toolbook language. Fortunately, there are several systems available that support user-developed

animations, built on the scripted 'interesting event' paradigm. XTango is the most popular

interesting event animation tool, currently available for stand-alone execution in the Unix and

Windows environments. The interesting event paradigm allows end users to create and modify

animation scripts in addition to replaying and interacting with ones already prepared by others.

Unfortunately, XTango is not available for Internet execution.

An attractive alternative tool is available. Researchers at Duke University (Pierson &

Rodger, 1998) have created a system called JAWAA that implements the XTango command set

using Java, which allows Internet delivery of animations. JAWAA supports the interesting event

paradigm and allows user-created animation scripts. Like XTango, JAWAA commands facilitate

creation, placement and manipulation of a wide variety of graphical objects like circles, lines,

squares, and points. Furthermore, they have extended the XTango command set to facilitate

animation of complex data structures, like trees, arrays, stacks and more, making it one of the

best general purpose animation systems available. A description of the JAWAA command

syntax is provided at the Internet address indicated above and, for the reader's convenience, at

Appendix D. However, despite its superiority and wealth of desirable features, the JAWAA

engine does not support some of the capabilities that were tested and found to be effective in the

HalVis framework. Fortunately, the JAWAA system can be extended and wrapped in HTML

script to provide most of the features we have described as being most significant.

We have named the modified software JA VIZ (Java-based Algorithm Visualization) tool.

The key extensions we implemented are:

150

• Contextual text messages- JAVIZ provides authors the capability to post

explanatory messages to the viewing screen to help users understand and interpret

the actions occurring on the screen.

• Pseudocode window collocated with the animation- JAVIZ allocates a pane for the

author to place pseudocode in any level of detail for the user to observe while the

animation is executing.

• Pseuducode highlighting- JAVIZ provides the author with the ability to highlight

specific lines in the pseudocode window, which helps the user identify at what step

the animation might be during the course of its execution.

• Chunking support- JAVIZ provides a mechanism for authors to let the system and

the user cooperatively control the semantic pauses in the execution of an animation

script to allow time to think, interpret and absorb the information as it unfolds.

151

> Applet Viewer: AnimCläSs.class

Applet

BUBBLE SORT

JMtefitefatttinl 3'hhM5

for i ■ 5 down to 2
for j - 1 to i-1

jfa[j]>a[j+l]

end if
end for

end for

bJ ^r1

Swapping two elements

Start Stop [Unpausen Step SetStepSize SmallStep

d

Figure 6.1. The JAVIZ Screen Depicting the BubbleSort Algorithm

Figure 6.1 shows a screen capture of the JAVIZ depiction of the BubbleSort algorithm, showing

the pseudocode window to the right, the animation pane to the left, and buttons to control the pace

of the animation above the contextual text window located at the bottom of the screen. Note the

similarity to the Detailed View of the HalVis framework (see Chapter 3.2.4).

6.4. JAVIZ LANGUAGE SYNTAX

This section describes the syntax of the scripting language commands. In most cases, the

JAVIZ syntax is the same as in the JAWAA system, which these commands extend, and the

XTANGO system, from which JAWAA evolved. Figure 2.15 shows a file of JAWAA scripted

commands, and Appendix D contains a copy of the JAWAA command syntax that is also available

at the Duke University Internet site.

152

The PostMessage command in Table 6.1 is used to place explanatory text in the

contextual text window. The animation author would use this command to provide the student

with a brief, one-line summary of that action being taken by the algorithm.

Command: PostMessage

Parameter: string

Example: PostMessage This is a contextual explanation

Table 6.1. The PostMessage Command

The pair of commands in Table 6.2 provide the mechanism to post a delimited sequence of lines,

generally pseudocode, into the text panel on the right hand side of the JA VIZ window. Note that

the text lines must be enclosed in quotation marks. If the text is wider or longer than the panel

provided, scroll bars will appear to allow the user to manipulate the text window. The example

sequence shown in Table 6.2 would post the three lines representing a simple FOR loop in the

JA VIZ pseudocode window.

Begin Command: PostPseudocode

Parameter(s): Line 1

Line 2 ...

Line n

End Command: EndPostPseudocode

Example: PostPseudocode

"forx = 1 to 10"

" y = y*x"

"endfor"

EndPostPseudocode

Table 6.2. The PostPseudocode Command Sequence

153

The command in Table 6.3 allows the animation author to highlight selected lines in the

pseudocode panel as a means of attracting attention to and indicating the line of the algorithm

currently being 'executed' in the animation. If a line number is given that exceeds the number of

lines in the pseudocode window, the last line is highlighted. If another line has been highlighted

as a result of a previous instance of this command, the other line is de-highlighted in favor of the

new line being selected. The example below results in the second line in the pseudocode

window being highlighted.

Command: HighlightLine

Parameter: Line number (an integer)

Example: HighlightLine 2

Table 6.3. The HighlightLine Command

The command in Table 6.4 implements the chunking capability demonstrated in the HalVis

framework. The animation author places these LogicalPause commands in the animation script

to mark semantic chunks or logical pausing locations. The integer value provided as a parameter

to the command indicates the pause level. The default value is 0, which is no logical pausing,

meaning the animation proceeds to completion unless the user specifically intervenes by pressing

the Pause or Stop buttons on the control panel. If the user presses the StepLevel button, the

chunking level is changed to 1, 2 or 3, depending on how many times the button is pressed.

Now, when the script encounters a LogicalPause, if the scripted pause level is less than the user

selected threshhold, the animation pauses. Otherwise, the animation proceeds as though the

LogicalPause was not in the script. This implements the chunking control feature that allows the

author to mark logical sequence boundaries in an algorithm but gives the user control to skip

154

across or pause at the boundaries. In the example below, if the user had selected StepLevel = 2,

the LogicalPause command indicated below would cause the animation to pause until the user

signaled he was ready to proceed by pressing the UnPause button. On the other hand, if the user

had selected StepLevel = 1, the LogicalPause command indicated below would be ignored, and

the animation would continue as though the command wasn't there.

Command: LogicalPause

Parameter: Pause level (an integer)

Example: LogicalPause 2

Table 6.4. The LogicalPause Command

6.5. RUNNING A JA VIZ VISUALIZATION

This section describes the steps involved in creating and executing a JA VIZ animation. One of

the strengths of this system is the ability to run animations from a remote site or locally-created

script files. The JA VIZ code is available at http://www.eng.auburn.edu/departments/cse/vi3rg

along with a limited number of animations to demonstrate the system capabilities. Users wishing

to author their own animation script must create an HTML file, similar to the one shown below,

that causes the JA VIZ program to seek the animation script file from the user's local Internet

resource, identified using the animLoc parameter.

<APPLET CODEBASE="http://www.eng.aubum.edu/department/research/vi3rg/JAVIZ"
CODE="AnimClass.class"
WIDTH=750
HEIGHT=450
ALIGN=CENTER>

<PARAM NAME=animLoc
VALUE=''http://wvvw.eng.aubum.edu/department/research/vi3rg/JAVIZ/BubSort.anim''>

<PARAM NAME=animName
 VALUE="Animation"></Applet>

Table 6.5. Sample HTML to Execute a Local Animation Script

The script file (an example is at Figure 2.15) containing the animation commands should be

saved in ASCII format in a directory available on the Internet as a Web resource. The name of

155

the file must match the name given in the ParamName animLoc entry of the HTML file as shown

above. When the HTML file is accessed using a Web browser, the JA VIZ code will execute the

script referenced and the animation will proceed as authored.

We will continue to enhance and improve the JA VIZ program as an ongoing research

project.

7. CONCLUSION

This research has produced the first consistently significant results involving algorithm

animation as a learning device. We have shown that subjects not only enjoy the hypermedia

presentation of information, they learn more effectively interacting with algorithm-embedded

hypermedia visualizations than from textbooks, lectures and animation-only approaches.

Admittedly, our results are based on a small set of algorithms tested with smaller-than-ideal

groups of subjects using a specially developed HalVis visualization system. Nevertheless, the

results across a group of seven separate experiments give encouraging support to the potential

benefits of using animation in algorithm education. Our results provide a general framework that

others can adapt to individual circumstances as needed.

7.1. RESEARCH CONTRIBUTIONS

Our contributions fall into three general areas.

Theoretical: Drawing from prior research and blending some innovative ideas of our

own, we have developed a framework for embedding animations into a knowledge-providing

hypermedia structure for teaching abstract and dynamic concepts. The framework is built on a

hierarchy of modules laced with embedded animations and hypermedia links that introduce

topics with broad analogies, guide the user to learn detailed information and reinforce the

learning objectives with multiple views. The framework underscores the importance of keeping

the user engaged with a variety of interaction techniques, chunking, questioning, and

encouraging self-explanation.

156

157

Empirical: We have conducted a series of experiments that validated our theoretical

framework with statistically significant results. We also provide experiments to gain insight to

the specific impact of various features and views of our framework. This work stands as the

most comprehensive set of empirical experiments involving the use of animation to help students

learn about algorithms that is available in current literature.

Software: We have created the HalVis system and programmed six algorithm tutorials.

We have demonstrated that the more significant features of our framework can be ported to other

algorithm animation environments by extending the capabilities of an existing Internet-based

authoring program to create the JA VIZ system. Both HalVis and JA VIZ are available for public

use.

7.2. FUTURE DIRECTIONS

In the course of most research projects, additional questions and topics are encountered, and

our experience has been no different. Future research could be conducted in the following areas:

• Study the impact of the conceptual view, specifically characteristics of analogies. What

about the analogies primed learning? How important are fidelity and interactivity to the

analogy? How much can students learn from analogy alone? What about algorithms for

which analogies don't readily exist?

• Study the effect of user/student-designed animations compared to expert-prepared ones using

the framework discussed here. Will students learn more effectively if they take a more

constructive approach and build their own animation depicting the algorithm's operations?

• Differentiate the effects of hypermedia visualization with different classes of subjects, such

as different genders, different learning style, and so on.

158

• Conduct deeper research into other measures of success like long-term retention, speed and

satisfaction. Our work just scratched the surface using these metrics. Does interacting with

hypermedia aid long term retention? How useful is the analogy to helping users recall

algorithmic details over the long term? Do hypermedia visualizations motivate students

differently than using other teaching techniques? What would the effect be of establishing

time limits on the comparative studies we conducted in Chapter 4?

• Explore the effects of color and sound on learning. Our work employed both, but on the

intuitive notion that sound and color help highlight important concepts and events. What

kind of audio is most effective to supplement and reinforce hypermedia modules? How can

visual techniques such as color changes or flashing objects be used to attract attention to

important items?

• Compile a list of guidelines to help authors create better algorithm animations. How big

should chunks be? What is the best way to use questions such as the ticklers, predictions and

feedback-style questions we employed?

• Conduct eye-tracking studies to explore where subjects look during a multi-pane animation.

What patterns develop? Are some panes used more than others, or not at all? How could a

designer place multiple panes for optimal use?

• Continue enhancing the authoring process. A major enhancement and convenience left for

future development is the creation of an interactive scripting environment that would allow

authors to visually place objects, generate the script and allow running the script from the

same facility. Currently, one must create the script commands using a separate process, then

run the JA VIZ engine to view the sequence. This approach works and is adopted by all other

animation systems, but is not as convenient as an interactive environment could be.

159

• Conduct experiments to evaluate the HalVis framework in other settings. Does the HalVis

framework accommodate harder and more complex algorithms? Can all algorithms be taught

with visualization or are there ones that are inherently non-visual? Our experiments

compared media against each other, and we hypothesize that combining visualization with

textual, lecturing and other teaching techniques should enhance learning even more than any

of these methods by themselves, but would that be the case?

Rather than abandoning the notion of employing algorithm animation as a learning aide, we have

shown that there are contexts in which animation can be quite effective, and have raised many

ideas and questions for future researchers to explore as a means of gathering deeper insight and

understanding into how computers and hypermedia can help humans visualize and learn abstract

concepts.

REFERENCES

Aho, A., Hopcroft, J., & Ullman, J. (1974). The design and analysis of computer algorithms. Reading,

MA.: Addison-Wesley Pub. Co.

Aho, A., Hopcroft, J., & Ullman, J. (1983). Data structures and algorithms. Reading, MA.: Addison-

Wesley Pub. Co.

Astrachan, O., Selby, T., & Unger, J. (1996). An object oriented, apprenticeship approach to data

structures using simulation. In Proceedings of IEEE 26th Frontiers in Education Conference (pp 130-

134). Los Alamitos, CA: IEEE CS Press.

Baase, S. (1988). Computer algorithms: introduction to design and analysis. Reading, MA: Addison-

Wesley Pub. Co.

Badre, A., Beranek, M., Morris, J. M., & Stasko, J. T. (1991). Assessing program visualization systems as

instructional aids. (Technical Report No. GIT-GVU-91-23). Atlanta, GA. Georgia Institute of

Technology.

Baecker, R. (1981). Sorting Out Sorting. [Narrated color film]. Presented at ACM SIGGRAPH'81 and

excerpted in ACM SIGGRAPH Video Review 7, 1983. Los Altos, CA: Morgan Kaufmann.

Baeker, R., DiGiano, C, & Marcus, A. (1997). Software visualization for debugging. Communications of

the ACM, 40(4), 44-54.

Bagui, S. (1998). Reasons for increased learning using multimedia. Journal of Educational Multimedia

and Hypermedia, 7(1), 3-18.

Bazik, J., Tamassia, R., Reiss, S., & van Dam, A. (1998). Software visualization in teaching at Brown

University. In M. Brown, J. Domingue, B. Price, & J. Stasko (Eds.), Software Visualization:

Programming as a Multimedia Experience (pp. 383-398). Cambridge, MA: The MIT Press.

Beall, J., Doppelt, A., & Hughes, J. (1997). Developing an interactive illustration: using Java and the web

to make it worthwhile, http://www.cs.brown.edu/research/graphics/projects/igi/spectrum, Brown

University.

Bellamy, R. K. E. (1994). What does pseudo-code do? A psychological analysis of the use of pseudo-code

by experienced programmers. Human-Computer Interaction 9, 225-246.

160

161

Bellamy, R. K. E. (1996). Designing educational technology: Computer-mediated change. In B. Nardi

(Ed.), Context and Consciousness: Activity Theory and Human-Computer Interaction (pp. 123-146).

Cambridge, MA: The MIT Press.

Birch, M., Boroni, C, Goosey, F., Patton, S., Poole, D., Pratt, C, & Ross, R. (1995). DYNALAB: a

dynamic computer science laboratory infrastructure featuring program animation. In Proceedings of

the 26' SIGCSE Technical Symposium on Computer Science Education (pp. 29-33). New York: ACM

Press.

Blackwell, A.F. (1996). Metacognitive theories of visual programming: What do we think we are doing?

In Proceedings of the 1996 IEEE Symposium on Visual Languages (pp. 240-246). Los Alamitos, CA:

IEEE CS Press.

Bloom, B. (1956). Taxonomy of educational objectives: the cognitive domain. New York, NY: Longman,

Inc.

B0dker, S. (1996). Applying activity theory to video analysis: How to make sense of video data in HCI. In

B. Nardi (Ed.), Context and consciousness: Activity Theory and Human-Computer Interaction (pp.

147-175). Cambridge, MA: The MIT Press.

Boyle, T., Stevens-Wood, B., Feng, Z., & Tikka, A. (1996). Structured learning in a virtual environment.

Computers & Education, 26(1-3): 41-49.

Brophy, S., & Schwartz, D. (1998). Interactive analogies. In Proceedings of the 1998 International

Conference of the Learning Sciences (pp. 56-62). Charlottesville, VA: AACE Press.

Brown, M. H. (1988a). Algorithm animation. Cambridge, MA: The MIT Press.

Brown, M. H. (19886). Perspectives on algorithm animation. In Proceedings of the ACM SIGCHI '88

Conference on Human Factors in Computing Systems (pp. 33-38). New York, NY: ACM Press.

Brown, M. H. (1988c). Exploring algorithms using Balsa-II. Computer, 21(5): 14-36, 1988.

Brown, M. H. (1991). Zeus: a system for algorithm animation. In Proceedings of the 1991 Workshop on

Visual Languages (pp. 4-9). Los Alamitos, CA: IEEE CS Press.

Brown, M. H. (1994). The 1994 SRC Algorithm Animation Festival. (Research report no. 126). Palo

Alto, CA: Digital Equipment Corp.

Brown, M. H., & Hershberger, J. (1991). Color and sound in algorithm animation. Proceedings of 1991

IEEE Workshop on Visual Languages (pp. 10-17). Los Alamitos, CA: IEEE CS Press.

Brown, M., & Najork, M. (1996). Collaborative active textbooks: a web-based algorithm animation system

for an electronic classroom. In Proceedings of the 1996 Symposium on Visual Languages (pp. 266-

275). Boulder, CO: IEEE CS Press.

Brown, M., Najork, M., & Raisamo, R. (1997). A Java-based implementation of collaborative active

textbooks. In Proceedings of the 1997 IEEE Symposium on Visual Languages (pp. 372-379). Capri,

Italy: IEEE CS Press.

162

Brown, M. H., & Sedgewick, R. (1985). Techniques for algorithm animation. IEEE Software 2(1), 28-39.

Byrne, M., Catrambone, R., & Stasko, J. T. (1996). Do algorithm animations aid learning? (Technical

Report No. GIT-GVU-96-18). Atlanta, GA: Georgia Institute of Technology.

Byrne, M., Guzdial, M., Ram, P., Catrambone, R., Ram, A., Stasko, J., Shippey, G., & Albrecht, F. (1995).

The role of student tasks in accessing cognitive media types. In Proceedings of the 1996 International

Conference on the Learning Sciences. Evanson, IL: AACE Press.

Casner, S. M., & Larkin, J. H. (1989). Cognitive efficiency considerations for good graphic design. In

Proceedings of the Annual Conference of the Cognitive Science Society (pp. 275-282). Hillsdale, NJ:

Erlbaum, Inc.

Catenazzi, N., Aedo, I., Diaz, P., & Sommaruga, L. (1997). The evaluation of electronic book guidelines

from two practical experiences. Journal of Educational Multimedia and Hypermedia, 6(1):91-114.

Chi, M.T.H., Bassok, M., Lewis, M, Reimann, P., & Glaser, R. (1989). Self-explanations: how students

study and use examples in learning to solve problems. Cognitive Science, 13, 145-182.

Cleveland, W. S., & McGill, R. (1986). An experiment in graphical perception. International journal of

Man-Machine Studies, 25, 491-500.

Cox, K. C, & Roman, G. C. (1992). Experiences with the Pavane program visualization system. (Technical

report No. WUCS-92-40). St. Louis, MO: Washington University in St. Louis.

Crosby, M., & Stelovsky, J. (1995). From multimedia instruction to multimedia evaluation. Journal of

Educational Multimedia and Hypermedia, 4(2/3): 147-162.

Curtis, B. (1986). By the way, did anyone study any real programmers? In Empirical Studies of

Programmers (pp. 256-262). Norwood, NJ: Ablex.

Daily, B. (1994). Multimedia and its impact on training engineers. International Journal of Human-

computer Interaction, 6(2): 191-204.

Dale, N, Lilly, S., & McCormick, J. (1996). Ada plus data structures: an object-based approach.

Lexington, MA: D.C. Heath and Company.

De Lillo, N. (1993). A first course in computer science with Ada. Homewood, IL: Irwin Pub. Co.

Dershem, H., & Brummund, P. (1998). Tools for web-based sorting animation. In Proceedings of the 29th

SIGCSE Technical Symposium on Computer Science Education (pp. 222-226). Atlanta, GA: ACM

Press.

Domingue, J., & Mulholland, P. (1997). Staging software visualizations on the web. In Proceedings of

1997 IEEE Visual Languages. Capri, Italy: IEEE CS Press.

Douglas, S.A., McKeown, D., & Hundhausen, C. (1993). Exploring human visualization of algorithms.

(Technical Report No. TR CIS-TR-94-27). Eugene, OR: University of Oregon.

163

Douglas, S. A. (1995). Conversation analysis and human-computer interaction design. In P. Thomas (Ed.)

Social and Interactional Dimensions of Human-Computer Interfaces . Cambridge: Cambridge

University Press.

Douglas, S. A., Hundhausen, C. D., & McKeown, D. (1995). Toward empirically-based software

visualization languages. In Proceedings of the 1995 IEEE Symposium on Visual Languages (pp. 342-

349). Los Alamitos, CA: IEEE CS Press.

Douglas, S. A., Hundhausen, C. D., & McKeown, D. (1996). Exploring human visualization of computer

algorithms. In Proceedings 1996 Graphics Interface Conference (pp. 9-16). Toronto, Canada:

Canadian Graphics Society.

Duchastel, P. (1978). Illustrating instructional texts. Educational Technology, 18, 36-39.

Eck, D. (1998). XSortLab. .http://mam.hws.eduyTMCM/java/labs/xSortLabLab.html, Brandeis University,

New York.

Felder, R., & Silverman, L. (1988). Learning and teaching styles in engineering education. Engineering

Education, 4, 674-681.

Ford, L. (1993). How programmers visualize programs. (Technical Report No. R 271). Exeter, U.K.:

University of Exeter, Department of Computer Science.

Gentner, D. (1989). The mechanisms of analogical reasoning. In S. Vosniadou & A. Ortony (Eds.)

Similarity and Analogical Reasoning. Cambridge, England: Cambridge University Press.

Gloor, P. (1992). AACE-algorithm animation for computer science education. In Proceedings of the 1992

IEEE Workshop on Visual Languages (pp. 25-31). Seattle, WA: IEEE CS Press.

Green, T., & Petre, M. (1996). Usability analysis of visual programming environments: A 'cognitive

dimensions' framework. Journal of Visual Languages and Computing. 7, 131-174.

Gurka, J. S., & Citrin, W. (1996). Testing effectiveness of algorithm animation. In Proceedings of the

1996 IEEE Symposium on Visual Languages (pp. 182-189). Los Alamitos, CA: IEEE CS Press.

Guzdial, M. (1995). Software-realized scaffolding to facilitate programming for science learning.

Interactive Learning Environments, 4(1), 1-44.

Guzdial, M., & Kehoe, C. (1998). Apprenticeship-based learning environments: A principled approach to

providing software-realized scaffolding through hypermedia. (Technical Report). Atlanta, GA:

Georgia Institute of Technology. Available at http://guzdial.cc.gatech.edu/papers/able/.

Hansen, S., Schrimpsher, D., & Narayanan, N. H. (1998a). From algorithm animations to animation-

embedded hypermedia visualizations. (Technical Report No. CSE98-05). Auburn, AL: Auburn

University.

Hansen, S., Schrimpsher, D., & Narayanan, N. H. (1998b). Empirical studies of animation-embedded

hypermedia algorithm visualizations. (Technical Report No. CSE98-06). Auburn, AL: Auburn

University.

164

Hansen, S., Schrimpsher, D., & Narayanan, N. H. (1998c). Learning algorithms by visualization: a novel

approach using animation-embedded hypermedia. In Proceedings of the 1998 International

Conference on the Learning Sciences (pp. 125-130). Charlottesville, VA: AACE Press.

Hansen, S., Schrimpsher, D., Narayanan, N. H. (1999). Helping learners visualize algorithms: Embedding

analogies and animations in hypermedia. Paper accepted to the 1999 World Conference on

Educational Multimedia, Hypermedia & Telecommunications (ED-MEDIA'99).

Harel, D. (1992). Algorithmics: the spirit of computing. Reading, MA.: Addison-Wesley Pub. Co.

Hartley, S. (1994). Animating operating systems algorithms with XTango. In Proceedings of the 1994

S1GCSE Technical Symposium on Computer Science Education (pp. 344-348). New York, NY: ACM

Press.

Heath, M. T., & Etheridge, J. A. (1991). Visualizing the performance of parallel programs. IEEE Software,

8(5), 29-39.

Heath, M. T., Malony, A. D., & Rover, D. T. (1995). Parallel performance visualization: From practice to

theory. IEEE Parallel & Distributed Technology, 3(4), 44-60.

Hegarty, M. (1992). Mental animation: inferring motion from static diagrams of mechanical systems.

Journal of Experimental Psychology: Learning, Memory and Cognition, 18(5): 1084-1102).

Hix, D., & Hartson, H. R. (1993). Formative evaluation: Ensuring usability in user interfaces. In L. Bass &

J. Dewan (Eds.), User Interface Software (pp. 1-30). New York, NY: John Wiley & Sons.

Hmelo, C. E. & Guzdial, M. (1996). Of black and glass boxes: Scaffolding for learning and doing. In

Proceedings of the 1996 International Conference of the Learning Sciences (pp. 128-134). Evanson,

IL: AACE Press.

Horowitz, E., Sahni, S. (1978). Fundamentals of computer algorithms. Potomac, MD: Computer Science

Press.

Hundhausen, C. D. (1995). A framework for semantics-based software visualization interaction. (Research

Project Report). Eugene, OR: University of Oregon, Department of Computer and Information

Science. Available at http://www.cs.uoregon.edu/~chundhau/research.

Hundhausen, C. (1996). A meta-study of software visualization effectiveness. Eugene, OR: University of

Oregon. Available at http://www.cs.uoregon.edu/ -chundhau/research.

Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice. Journal of the

Learning Sciences 4(1), 39-103.

Kamada, T., & Kawai, S. (1991). A general framework for visualizing abstract objects and relations. ACM

Transactions on Graphics, 10(1), 1-39.

Kehoe, C. M., & Stasko, J. T. (1996). Using animations to learn about algorithms: An ethnographic case

study. (Technical Report No. GIT-GVU-96-20). Atlanta, GA: Georgia Institute of Technology.

165

Kimelman, D., Rosenburg, B., & Roth, T. (1994). Strata-Various: Multi-layer visualization of dynamics in

software system behavior. In Proceedings of Visualization '94 (pp. 172-178). Los Alamitos, CA: IEEE

CS Press.

Kingston, J. (1998). Algorithms and data structures : design, correctness, analysis. I Reading, MA.:

Addison-Wesley Pub. Co.

Kirsh, D. (1997). Interactivity and multimedia interfaces. Instructional Sciences, 1997.

Knuth, D. (1973). The art of computer programming. Reading, MA.: Addison-Wesley Pub. Co.

Kolodner, J. (1993). Case-based Reasoning. San Mateo, CA: Morgan Kaufmann Publishers.

Kozen, D. (1992). The design and analysis of algorithms. New York: Springer-Verlag Pub.

Kraemer, E., & Stasko, J. T. (1993). The visualization of parallel systems: An overview. Journal of

Parallel and Distributed Computing 18(2), 105-117.

Lahtinen, S., Sutinen, E., & Tarhio, J. (1998). Automated animation of algorithms with Eliot. Journal of

Visual Languages and Computing, 9, 337-349.

Larkin, J., & Simon, H. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive

Science, 11,65-99.

Lave, J. (1988). Cognition in Practice. Cambridge, MA: Cambridge University Press.

Lavery, D., & Cockton, G. (1996). Heuristic evaluations for software visualization: usability evaluation

materials. (FIDE Technical Report No. FIDE/96/10). Glasgow, Scotland: University of Glasgow.

Lawrence, A. W. (1993). Empirical studies of the value of algorithm animation in algorithm understanding.

(Doctoral Dissertation, Georgia Institute of Technology, 1993).

Lawrence, A. W., Badre, A. N., & Stasko, J. T. (1994). Empirically evaluating the use of animations to

teach algorithms. In Proceedings of the 1994 IEEE Symposium on Visual Languages (pp. 48-54). Los

Alamitos, CA: IEEE CS Press.

Lester, J., Converse, S., Kahler, S., Barlow, T., Stone, B., & Bhogal, R. (1997). The persona effect:

affective impact of animated pedagogical agents. In Proceedings of CHI '97 (pp. 359-366). Atlanta,

GA: ACM Press.

Mackinlay, J. (1986). Automating the design of graphical presentations of relational information. ACM

Transactions on Graphics 5(2), 110-141.

Manber, U. (1989). Introduction To Algorithms: A Creative Approach. Reading, MA.: Addison-Wesley

Pub. Co.

Matlin, M. (1989). Cognition (2nd ed). New York: Holt, Rinehard & Winston.

Mayer, R. (1989). Systematic thinking fostered by illustrations in scientific text. Journal of Educational

Psychology, 81(2):240-246.

Mayer, R. & Anderson, R. (1991). Animations need narrations: An experimental test of a dual-coding

hypothesis. Journal of Educational Psychology 83(4), 484-490.

166

Mayer, R., & Anderson, R. (1992). The instructive animation: helping students build connections between

words and pictures in multimedia learning. Journal of Educational Psychology, 84(4):444-452.

Mayer, R., & Moreno, R. (1998) A cognitive theory of multimedia learning: Implications for design

principles. In F. Durso (Ed.), Handbook of Applied Cognition (in press).

Mayer, R., & Sims, V. (1994) For whom is a picture worth a thousand words? Extensions of a Dual-

Coding Theory of Multimedia Learning, Journal of Educational Psychology, 86(3):389-401.

McWhirter, J. (1996). Algorithm explorer: a student centered algorithm animation system. In 1996 IEEE

Symposium on Visual Languages (pp. 174-181). Los Alamitos, CA: IEEE Press.

Miller, G.A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for

processing information. Psychological Science, 63:81-97.

Muldner, T., Muldner, K., & Van Veen, C. (1997). Experience from the design of an authoring

environment. Journal of Educational Multimedia and Hypermedia, 6(1), 115-132.

Mukherjea, S., & Stasko, J. T. (1994). Toward visual debugging: Integrating algorithm animation

capabilities within a source-level debugger. ACM Transactions on Computer-Human Interaction 1(3),

215-244.

Muthukumarasamy, J., & Stasko, J. T. (1995). Visualizing program executions on large data sets using

semantic zooming. (Technical Report No. TR GIT-GVU-95-02). Atlanta, GA: Georgia Institute of

Technology.

Myers, B. A. (1986). Visual programming, programming by example, and program visualization: a

taxonomy. In Proceedings of ACM CHI'86 Conference on Human Factors in Computing Systems (pp.

59-66). New York: ACM Press

Myers, B. A. (1990). Taxonomies of visual programming and program visualization. Journal of Visual

Languages and Computing 1(1), 97-123.

Mynatt, B., Leventhal, L., Instone, K., Farhat, J., & Rohlman, D. (1992). Hypertext or book: Which is

better for answering questions? In Proceedings CHI'92 (pp 19-25). New York: ACM Press.

Naps, T. (1990). Algorithm visualization in computer science laboratories. In Proceedings of the 1990

SIGCSE Technical Symposium on Computer Science Education (pp. 105-110). New York: ACM

Press.

Naps, T., & Bressler, E. (1998). A multi-windowed environment for simultaneous visualization of related

algorithms on the WWW. In Proceedings of the 1998 SIGCSE Technical Symposium on Computer

Science Education (pp. 277-281). New York: ACM Press.

Naps, T., & Nance, D. (1995). Introduction to computer science: programming, problem solving and data

structures. New York: West Pub. Co.

Narayanan, N. H., & Hegarty, M. (1998). On designing comprehensible interactive hypermedia manuals.

International Journal of Human-Computer Studies, 48:267-301.

167

Narayanan, N. H., Hmelo, C, Petrashin, V., Newstetter, W., Guzdial, M., & Kolodner, J. (1995).

Computational support for collaborative learning through generative problem solving. In Proceedings

of Computer-Support for Collaborative Learning (CSCL) '95. Available at http://www-

cscl95.indiana.edu/cscl95/narayanan.html.

Nardi, B. (Ed.). (1996). Context and Consciousness: Activity Theory and Human-Computer Interaction.

Cambridge, MA: The MIT Press.

Nielsen, J. (1992). Finding usability problems through heuristic evaluation. In Proceedings of CHI'92

Conference on Human Factors in Computing Systems (pp. 373-380). New York: ACM Press.

Oudshoorn, M. J., Widhaha, H., & Ellershaw, S. K. (1996). Aspects and taxonomy of program

visualization. In P. Eades & K. Zhang (Eds.), Software Visualization (pp. 3-25). River Edge, NJ:

World Scientific Publishing Co.

Paivio, A. (1986). Mental Representations: A Dual Coding Approach. Oxford, England: Oxford

University Press.

Palmiter, S., & Elkerton, J. (1993). Animated demonstrations for learning procedural computer-based

tasks. Human-Computer Interaction 8(3), 193-216.

Pane, J. F., Corbett, A. T., & John, B. E. (1996). Assessing dynamics in computer-based instruction. In

Proceedings CHI'96 Conference on Human Factors in Computing Systems (pp. 197-204). New York,

NY: ACM Press,

Petre, M. (1995). Why looking isn't always seeing: Readership skills and graphical programming.

Communications of the ACM 38(6), 33-44.

Petre, M., Blackwell, A. F., & Green, T. R. G. (1998). Cognitive questions in software visualization. In M.

Brown, J. Domingue, B. Price, & J. Stasko (Eds.), Software visualization: Programming as a

multimedia experience (pp. 453-480). Cambridge, MA: The MIT Press.

Petre, M., & Green, T. R. G. (1993). Learning to read graphics: Some evidence that'seeing'an

information display is an acquired skill. Journal of Visual Languages and Computing 4, 55-70.

Pierson, W., & Rodger, S. (1998). Web-based animation of data structures using JAWAA. In Proceedings

of the 1998 SIGCSE Technical Symposium on Computer Science Education (pp. 267-271). Atlanta,

GA: ACM Press.

Price, B. A., Baecker, R. M., & Small, I. S. (1993). A principled taxonomy of software visualization.

Journal of Visual Languages and Computing 4(3), 211-266.

Rappin, N, Guzdial, M., Realff, M., & Ludovice, P. (1997). Balancing usability and learning in an

interface. In Proceedings CHI'97 (pp. 479-486). Atlanta, GA: ACM Press.

Recker, M., Ram, A., Shikano, T., Li, G., & Stasko, J. T. (1995). Cognitive media types for multimedia

information access. Journal of Educational Multimedia and Hypermedia 4(2/3): 183-210.

168

Reed, S. (1985). Effect of computer graphics on improving estimates to algebra word problems. Journal of

Educational Psychology, 77(3):285-296.

Reingold, E., & Hansen, W. (1983). Data structures. Boston, MA: Little, Brown Publishing.

Rieber, L. P. (1990) Using computer animated graphics in science instruction with children. Journal of

Educational Psychology, 82(1): 135-140.

Rieber, L. P., Boyce, M. J., & Assad, C. (1990). The effects of computer animation on adult learning and

retrieval tasks. Journal of Computer-Based Instruction, 17(2), 46-52.

Robertson, P. (1991). A methodology for choosing data representations. IEEE Computer Graphics and

Applications, May 1991, 55-66.

Rogers, P. Gaizauskas, R. Humphreys, K., & Cunningham, H. (1997). Visual execution and data

visualization in natural language processing. In Proceedings of the 1997 IEEE Symposium on Visual

Languages (pp. 338-343). Los Alamitos, CA: IEEE CS Press.

Roman, G. C, Cox, K. C, Wilcox, C. D., & Plun, J. Y. (1992). Pavane: A system for declarative

visualization of concurrent computations. Journal of visual languages and computing 3(2), 161-193.

Roman, G. C, & Cox, K. C. (1993). A taxonomy of program visualization systems. IEEE Computer

26(12), 11-24.

Rowe, G. (1997). Introduction to data structures and algorithms with C++. New York: Prentice Hall.

Sanderson, P. M., & Fisher, C. (1994). Exploratory sequential data analysis: Foundations. Human-

Computer Interaction 9(3-4), 251-318.

Sangwan, R., & Korsh, J. (1998). A system for program visualization in the classroom. In Proceedings of

the 1998 SIGCSE Technical Symposium on Computer Science Education (pp. 272-276). Atlanta, GA:

ACM Press.

Schneiderman, B. (1998). Designing the User Interface: Strategies for Effective Human-Computer

Interaction, Addison-Wesley, Reading, MA, 1998.

Sedgewick, R. (1988). Algorithms. Reading, MA.: Addison-Wesley Pub. Co.

Shaffer, C. (1997). A practical introduction to data structures and algorithm analysis. Upper Saddle

River, N.J.: Prentice Hall.

Shaffer, C, Heath, L., Nielsen, J., & Yang, J. (1996). SWAN: A student-controlled data structure

visualization system. In Proceedings of the 1996 World Conference on Educational Multimedia and

Hypermedia (ED-MEDIA-96) (pp. 632-637). Charlottesville, VA: AACE Press.

Shikano, T., Recker, M., & Ram, A. (1996). Evaluating organization of a hypermedia learning

environment using GOMS model analysis. Proceedings of the 1996 World Conference on Educational

Multimedia and Hypermedia (ED-MEDIA-96). Charlottesville, VA: AACE Press.

169

Shippey, G., Ram, A., Albrecht, F., Roberts, J., Guzdial, M., Catrambone, R., Byrne, M., & Stasko, J. T.

(1996). Exploring interface options in multimedia educational environments. In Proceedings of the

1996 International Conference of the Learning Sciences. Evanston, IL: AACE Press.

Simpson, J. A. & Weiner, E.S.C. (Ed.). (1989). The Oxford English Dictionary (2nd ed.). Oxford: Oxford

University Press.

Singh, B., & Naps, T. (1985). Introduction to data structures. New York: West Pub. Co.

Soloway, E., Jackson, S., Klein, J., Quintana, C, Reed, J., Spitulnik, J., Stratford, S., Studer, S., Jul, S.,

Eng, J., & Scala, N. (1996). Learning theory in practice: Case studies of learner-centered design.

Proceedings ofCHI'96. New York: ACM Press.

Stasko, J. (1990). TANGO: A framework and system for algorithm animation. Computer, Sept 1990, 27-

39.

Stasko, J. (1992). Animating algorithms with XTango. SIGACTNews, 23(2): 67-71.

Stasko, J. (1997). Using student-built algorithm animations as learning aids. In Proceedings of the 1997

SIGCSE Technical Symposium on Computer Science Education (pp. 25-29). New York: ACM Press.

Stasko, J., Badre, A., & Lewis, C. (1993). Do algorithm animations assist learning? an empirical study and

analysis. In Proceedings of ACM INTERCHI'93 Conference on Human Factors in Computing Systems

(pp. 61-66). New York, NY: ACM Press.

Stasko, J., Domingue, J., Brown, M., & Price, B. (1998). Software Visualization: Programming as a

Multimedia Experience. Cambridge, MA: MIT Press.

Stasko, J. & Patterson, C. (1992). Understanding and characterizing software visualization systems. In

Proceedings of the IEEE Symposium on Visual Languages (pp. 3-10). Los Alamitos, CA: IEEE Press.

Suchman, L. A. (1987). Plans and Situated Actions: The Problem of Human-Computer Communication.

New York: Cambridge University Press.

Suni, I., & Ross, S. (1997). Iterative design and usability assessment of a materials science hypermedia

document. Journal of Educational Multimedia and Hypermedia, 6(2), 187-199.

Tufte.E. R. (1983). The Visual Display of Quantitative Information. Cheshire, CT: Graphics Press.

VanLehn, K., Jones, R., & Chi, M.T.H. (1992) A model of the self-explanation effect. Journal of the

Learning Sciences, 2(1), 1-59.

Vessey, I. (1985). Expertise in debugging computer programs: a process analysis. International Journal

of Man-Machine Studies, 23, 459-494.

Wang, D., & Arbib, M. (1993). Timing and chunking in processing temporal order. IEEE Transactions on

Systems, Man, and Cybernetics, 23(A), 993-1110.

Weiss, M. A. (1993). Data Structures and Algorithm Analysis using ADA. Redwood City, CA: Benjamin

Cummings Publishing Company.

170

Whale, G. (1996). A data structure animation tool for computer science laboratories. In Proceedings of

the 1996 World Conference on Educational Multimedia and Hypermedia (ED-MEDIA-96) (pp. 697-

702). Charlottesville, VA: AACE Press.

Whitney, R., & Urquhart, N. (1990). Microcomputers in the Mathematical Sciences: Effects on Courses,

Students and Instructors. Academic Computing, Mar 90, 14-52.

Wilcox, E., Atwood, J., Burnett, M., Cadiz, J., & Cook, C. (1997). Does continuous visual feedback aid

debugging in direct-manipulation programming systems? An empirical study. In Proceedings of

CHI'97 (pp. 258-265). Atlanta, GA: ACM Press.

Williams, C. J., & Brown, W. W. (1990). A review of research issues in the use of computer-related

technologies for instruction: What do we know? Journal of Instructional Media 17(3), 213-225.

Wilson, J., Katz, I. R., Ingargiola, G., Aiken, R., & Hoskin, N. (1995). Students' use of animations for

algorithm understanding. In Proceedings CHI '95 (pp. 238-239). New York: ACM Press.

Wirth, N. (1986). Algorithms and Data Structures. Englewood Cliffs, NJ.: Prentice-Hall Publishing.

Wright, P., & Lickorish, A. (1983). Proof-reading texts on screen and paper. Behaviour and Information

Technology, 2(3):227-235.

Yaverbaum, G., Kulkarni, M., & Wood, C. (1997). Multimedia projection: An exploratory study of

student perceptions regarding interest, organization, and clarity. Journal of Educational Multimedia

and Hypermedia, 6(2): 139-153.

APPENDIX A: THE HALVIS VISUALIZATIONS

The sections that follow show all the screens of the Hal Vis prototype. Where

possible, the screen captures were taken during execution rather than at the beginning or

the end, to help the reader envision how the objects on the screen appeared to the user.

The screens are ordered by algorithm and according to the natural navigational path the

user was encouraged to pursue. The user was provided a flexible navigational interface

that defaulted to the sequence of screens depicted in these pages, or allowed the user to

deviate and navigate directly to desired topics. Most screens included a short audio

welcoming and orientation track. The Detailed View and Populated View screens

included audio event signals and end-of-execution prompts to encourage the user to try

various other options available for enhancing the animation.

171

172

B.l FUNDAMENTAL MODULE SCREENS

Objective Recognize some of the different methods of depicting or expressing the steps involved in an algorithm

Topic

Back
Ways to Represent Algorithms

Representing an Algorithm
An algorithm is simply a sequence of

operations or actions that solve a
problem. There are several ways to

depict the actions that vary in complexity
and structure. For example, a recipie is
one way of representing the algorithm to

make good chocolate chip cookies.

In computer science, we typically see
flowcharts and pseudocode to elaborate

on the actions of the algorithm.
Flowcharts are graphically informative

but harder to create and modify;
pseudocode is popular because it is

quite flexible, easy to write, and closely
mimics most programming languages.

Pseudocode
Notation

initialize a to 1
input b
if b > 0

b = a + 5
else

b = b*(-1)
endif

output b

Figure A.1.1. Fundamentals Module Screen- Representation

Objective jcornprehend the mechanisms used in algorithms to depict a sequence of actions to be performed

Topics

Back
The Sequence Operation

Sequence
Performing a sequence of

operations is simply following
a list of instructions in the
order they are listed. A

sequence of steps is shown
here in the graphically-

oriented Flowchart Notation
and again in the more

textually-oriented
Pseudocode Notation.

Pseudocode Notation

set a to 1
b = a + 5
output a
output b

Flowchart
Notation

Program Example
(in Pascal)

*
a:=1:
b:= a + 5;
wcitelnf'a-'.a);
wrHelnfb=".b);

set a to 1

| b=a+S |

*
output a

i
output b

Figure A.1.2. Fundamentals Module Screen- Sequence

173

Objective Comprehend the mechanisms used in algorithms to choose or select different sequences of actions

Tgpjcs

Hack
The Selection Operation

Selection
The Selection construct is

used when a choice needs to
be made that will dictate a
sequence of actions if the
answer is true and another
sequence of actions if the
answer is false. Selection
steps are depicted slightly

differently
in Flowchart Notation and
in Pseudocode Notation.

Pseudocode Notation

ifa>b
output "a is bigger"

else
output "b is bigger"
endif

b = a"b

Program Example
[In Pascal!

ifa>b
writelnf'a is bigger")

else
writelrO is bigger");

b:=a-b;

true / is
a>b?

\ false

" "
output "a is bigger" output "b Is bigger"

b = a*b

Figure A.1.3. Fundamentals Module Screen- Selection

Objective [Comprehend the mechanisms used in algorithms to repeat sequences of actions...known as looping or iteration

The Looping Operation

A loop is a sequence of operations or tasks
that we want to repeat one or more times, and

are frequently used in programming. There
are different ways to control how many times a

loop is performed, like a fixed loop that
performs actions a set number of times, a

counting loop that performs an action a
variable number of times, and conditional loop
that repeats until some event happens. Note
that conditional loops might never terminate if

the expected ending condition never
occurs...and endless loops are NOT GOOD.

Loops can also be nested, so that one (or
more) loops appear inside the body of another.

Loops consist of a body, controlling variable
and boundaries. The body is the sequence of
actions to be accomplished. The controlling

variable is used to determine when the
terminating condition is met and must function
within the upper and lower boundaries or the

loop will not function correctly.

A Nested Loop

ilag = false
while flag is not true

actions
repeat N times

nested actions
end of loop

set flag as appropriate
end of loop

inner
loop

outer
loop

Choose One from this column and One from this column

O Simple Loops

Nested Loop

O Endless Loop

® fe ejrfpo»dkB_Npto8onj

O Flowchart Notation

O Program Example

Figure A.1.4. Fundamentals Module Screen- Iteration

174

Objective Comprehend what recursion is and how it is used in algorithms to solve problems

Topics

Back
The Recursive Operation

A recursive operation is one that calls
itself as a step in solving itself. This
apparent circularity is often confusing:
to solve the problem, first solve the
problem. However, recursion works
because:

(1) each call to itself involves a smaller
instance of the original

(2) Ultimately, the problem must
reduce to a simple base case, which
can be solved easily without further
recursion, and starts 'unwinding' the
previous calls with the solution.

Recursion is an elegant way of
expressing some algorithms, but it
should be noted that virtually every
recursive algorithm can be rewritten
as a non-recursive routine.

Pseudocode Notation
Recursive Approach

Pseudocode Notation
NonRecursh/e Approach

factorial(N) factorial(N)

ifN = 1
return 1

else
output N'factorial(H 1)
endif

Total = N
while N>1

N = N-1
Total = Total" N
end while

output Total

Show Me Recursion jSliow Me iteration!

Figure A.1.5. Fundamentals Module Screen- Recursion

Objective Recognize different classes of algorithms and relative efficiency of data sets of various sizes

Topics

Back
About Algorithm Efficiency

Algorithm efficiency is categorized by the number of major steps needed to
handle a single input, equating a major step to a "uniT of time. Badly designed
algorithms will take more steps than needed (and hence more time) and be
arguably less efficient than a well-designed routine that takes fewer steps.
Efficiency is important because most programs deal with hundreds or even
thousands of input values, and the additional time that an inefficient algorithm
would take can become significant.

For example, if it takes a sequence of 5 statements to solve a single input
value, this would take 1 unit of time. To solve 10 inputs would require 5 * 1 units of
time...and N Inputs would take N * 1 units of time. This is called "linear" because
each added input value simply increases the time to complete the problem by one
unit of time. A linear algorithm is very efficient.

If we had a nested loop of a linear sequence that took 1 time unit, but looped as
many times as there were inputs, it would take 2*2 units of time to solve for 2
inputs, and 3 * 3 for 3 inputs, and N * N for N inputs. These are known as N-
squared algorithms, since each additional input increases the time to solve the
problem by a factor of N.

There are no linear sort algorithms... most are in the N-squared category, which
means that to sort a sequence of 10 numbers using an N-squared class
algorithm takes 100 units of time. This seems a trivial amount of time, but
consider an input sequence of 1000 values...it would lake 1000 units using a
linear algorithm but 1000000 units using an N-squared routine. This difference is
significant.

A handful of the very clever sort algorithms fall into a class that lies between
linear and N-squared, called the logarithmic class algorithms, which involve
N* log N steps.

And there are some very complex or inefficient algorithms that are worse than N-
squared in efficiency, known as exponential algorithms which involve 2AN steps.

N
(amber of inpuls)

Units of time

50 674

Progress meter...

O Linear

O Logrithmic fNLogN")

N-Squared

O Exponential

Figure A.1.6. Fundamentals Module Screen- Efficiency

175

Objective {comprehend that information can he organized in different ways based on specific ordering criteria

Sorted and Unsorted Data

Sorted vs Unsorted
A list is sorted if the elements are

organized in a particular order, like in
alphabetical order, numerical order.
or the size of the shapes involved.

Ascending vis Descending Order
Ascending order means the elements

are listed from smallest to largest.
Descending order means the

elements are organized from largest
to smallest.

Unsorted Sorted
Ascending

Order
Descending

Order

H
1

1
B
0
B
13
E3

!•-' "1

K: ■ :|

fr =■■■■■■!

EE3

m
m
a

¥ ■■ 1
ED
O
1
*■' ■■■-■] o
B tv \

Choose one:

O Numerical Order

O Alphabetical Order

t§> Shape Size

Figure A.1.7. Fundamentals Module Screen- Sorted Data

Objective [Comprehend how comparisons are done by programs, what inversions are. and how swapping corrects them

Topics

Back
Comparing and Swapping Values

A comparison operation
involves a decision about
some quantifiable aspect

(value, size, weight, etc) of two
items to determine whether

one is larger or smaller, or that
they are equal. If we are
sorting a list of items into
ascending order, we will

compare pairs of values and
exchange their positions if they

are out of order. Each pair
that is out of order is called an

inversion, which the swap
operation rectifies.

Since the value in location 1 is out off
order compared to the Hern in location 2,

we need to swap them to correct the
inversion.

Continue j Cancel

Figure A.1.8. Fundamentals Module Screen- Swapping

176

Objective [This screen provides background about pi'JOt picking strategies «set! in Quicksort Algorithm

SSBSI
Back

Picking Pivots

The task of picking a pivot value to use in Quicksort is
the subject of much research. A good pivot will evenly
partition the list into balanced sublists, while a bad
choice leads to an imbalanced tree.

Three pivot picking strategies are shown here:

Leftmost (simply taking the leftmost value in the list).
While this is very simple to implement, if the input data
is consistently ordered, this leads to a very bad
partitioning

Random (choosing a value at random from the list)
This is slightly better than Leftmost, but can still lead to
unlucky partitioning, and is unpredictable, at best.

MedianOfl (involves examining the first, middle and last
ralues In the list and using the middle of the three)
This is more complicated to implement, but guarantees
lhatthe pivot will never be the extreme value and will
create a relatively even partitioning.

Choose one from this fist and one from this Bst

O Ascending Data O LeftMost Value
O Random Value

® Median Of 3
Random Data

Figure A.1.9. Fundamentals Module Screen- Picking Pivots

Objective frlHs screen defines basic terminology associated with graphs

TOPICS

Back
Graph Terminology

Graphs are useful data structures. Some common
graph terminology is discussed below

Vertex or Node: a junction point

Edge or Link: a relationship or link between two nodes

Adjacent: the term used to indicate that two nodes
are connected by a single edge

Path: the sequence of one or more edges between
two nodes

Cycle: a path that leads back to a node. There is a
cycle here (A-B-D-C-A)

Acyclic: A graph without cycles

Weighted graph: a graph whos edges are weighted
by some quantifiable value.

Branching Factor: A number that indicates how
many edges flow from a given node. The branching
factor here is approximately 3 (see nodes B and D)

Figure A.1.10. Fundamentals Module Screen- Graph Terms

177

B.2 BUBBLE SORT

Objective [This screen provides the basic idea of the Bubble Sort algorithm using a real-world example

Mi Menu >
IJ ,: ;j

Bubble sort gets its name from the
world of physics, where bubbles in

water rise to the surface.
Generally, when a bubble is

knocked loose and begins its
ascent, it continues till it rises to

the surface. Usually, a bubble will
knock into and move around other

bubbles on its way.

In Bubble Sort, we let the smallest
(or largest) item float to the top of
the list, then repeat for the next
smallest, then the next, until all

items have bubbled up (or down)
to their proper place.

Animate Bubbles

Figure A.2.1 Bubble Sort Algorithm Conceptual View Screen

Provide information about the behavior of the Bubble Sort algorithm and introduce the pseudocode

Description of Bubble Sort

Bubble Sort is in iterative routine in that it uses nested loops to cycle
or loop through elements in a list. The inner loop (controlled here by
the variable labeled 'y) compares neighboring pairs of adjacent
elements and swaps them if the first element is smallerthan the
second element of the pair. The outer loop (controlled here by the
variable labeled \) controls the number of passes needed to
guarantee the elements end up in sorted order. For Bubble Sort
pass is needed for each element in the list. In each pass, sm "*
elements are bubbled' upward and the smallest remaining vajde
always ends up in the uppermost remaining position.

Here, two versions of Bubble Sort are shown ..one version bubbles-""^
the smallest value to the top (or left side), while the other version
accomplishes the same end result by 'pushing' bigger values down to
the bottom, sort of an inverted Bubble Sort. This would be like
shaking a bin of racks and having the bigger ones settle to the
bottom of the container while the smaller pebbles jostle to the top.

Bubble Sort is one of the easiest sorting algorithms to remember and
implement, but it is terribly inefficient. It practically compares every
element against every other element (specifically it makes N*(N-1)/2)
comparisons), and EVERY TIME an inversion is detected, a swap is
performed. The worse case would be an input list in descending
order, which would incur a swap for every single comparison...very
wastefull

for x = N-1 downto 1
for y = N downto N-x+1

,...!AR.RMY:.11 iARRAYIyJ
swap

ndif
endfor

endfor

for x = 1 to N-1

..ÜO.üJÜi.'Ü \!i...
..Jti^AY[y:JJi>_ARRAYly.Li

swap
endif

endfor
endfor

Figure A.2.2. Bubble Sort Algorithm Description Screen

178

Objective Comprehend the design, behavior and the specific mechanisms of the bubble sort algorithm

Detailed Look at Bubble Sort Menu >!
J

Controls

Temp

n H H H H B H

for y = N downto N-x+1
if ARRAY[y-1]>ARRAY[y]

Pass*

! 1

X Y Comparing

of Comparisons # of Swaps

1 1 6

I 6 ! 2

äeginning pass # 1
Comparing elements 7 and 6- -Swapping...
Comparing elements 6 and 5- -Swapping...
Comparing elements 5 and 4- -Swapping...
Comparing elements 4 and 3- -Swapping...
Comparing elements 3 and 2- -Swapping...
Comparing elements 2 and 1 - -Swapping...

Figure A.2.3. Bubble Sort Algorithm Detailed View Screen

Objective observe how Bubble Sort works on larger sets of numbers

Topics'
Back

Show me:

BubbleSort '

Bubble Sort in Action

• ttllflHElll
10

h

Color Legend
W~i done & in place
■I pending
pi comparingfewapping

Select speed
(or press LEFT mouse button daring

afeozitlim execution to adjust)

j Fastest

Medium
j
j Slowest

Vour Actual
Predictions: C alculations:

Passes completed 50 13

Compaiisons 2500 SAA

Swaps: 1000 409

Figure A.2.4. Bubble Sort Algorithm Populated View Screen

179

Objective [fest yow knowledge about specific aspects of t!ie Bubble Sort algorithm

:< Topics

Back
Questions about Bubble Sort

J Questionl

J Question?

J Questions

*f Question^

CoriecH

What would the order be after the first pass of an ascending sort,
given the initial list:

12,3,1.9,5

BtT

»;1. 12. 3.5.9!

012.1.3.9,5

OlZ. 3. 9. 5.1

23)1. 3.5. 9.12

Figure A.2.5. Bubble Sort Algorithm Question Screen

180

B.3 SELECTION SORT

Objective [This screen provides the basic idea of the Selection Sort algorithm using a real-world example

< Menu >

Select sort works Hke kids lining up at
school when the bell rings. They assemble
in random order. To put them in order, the
the teacher scans (or 'passes') down the
fine, selecting the shortest person to trade
places with whoever is at the head of the

Bne.

J?l?PVf M? toLÖ£?LP®s?J

Then the teacher scans the remaining
students to find the next smallest person,

trading them with the person in the second
position. Then the third shortest is

selected and moved into the third slot, and
so on until everyone in the line is in order.

Show Me the Rest

Figure A.3.1 Selection Sort Algorithm Conceptual View Screen

Objective provide information about the behayior of the Selection Sort algorithm and introduce the pseudocode

1 Topics >
Back

Description of Selection Sort

The Selection Sort algorithm is an iterative routine in that it uses nested
loops to make several passes or loops through elements in a list. The
inner loop (controlled here bythevarlable labeled V5 has the simple task
of finding the smallest element in the list. To do this, it scans the
unsorted elements to find the smallest one. It begins assuming and
using the first value in the unsorted portion as the smallest remaining
element, and checks it against each successive element in the list.
Whenever it finds an element smallerthan the one previously discovered
on that pass, the routine keeps track of the location ofthat value (using the
rariable MIN), and continues the scan until the end of the list. At that point,
MIN marks the smallest value, and can be swapped with the head of the
unsorted list.

Since the inner loop only makes one pass through the elements to find
the smallest one left, an outer loop (controlled here by the variable labeled
SO becomes necessary to perform this task once for each position in the
list. Without this outer loop, only the first element would be sorted into
position. Another pass is needed to find the next smallest value to put in
position 2, and anotherto put the next smallest in position 3, and so on.

In Selection Sort, each pass involves a number of comparisons, but only
one swap operation. In the four element list shown, the first pass would
require 3 comparisons but only one swap. The next pass would require 2
comparisons and one swap. The third pass would require 1 comparison
and one swap. Afourth pass would not be needed since the last element,
by default, is the smallest remaining item. Hence, to place a list of 4
elements in order, we need 6 (this is N(N-1)ft) comparisons and 3 (this
is"N-1") swaps. Selection Sort is nolterriblv efficient but is rather easy to
remember and implement.

forx=1 toN-1
MIN = x
lory = ::•! tor

ifa|y]<a|»
MIN = y
endif

endfor
swap aJMIN] and ajx]
endfor

Figure A.3.2. Selection Sort Algorithm Description Screen

181

Objective This screen presents the algorithm and demonstrates how it functions, focusing on the key design

Menu
iconSSS] IE»«] Detailed Look at Selection Sort

Temp

m 4
1 2

as0
3 4 5

I 6

6 7

for y = x+1 to N
if atyl < a[MIN]

endfor
swap a[MIN] and ajx]
endfor

■Beginning pass # 2
■ Comparing Items 2 and 3—New Min (3) found

I
Comparing

Pass* X I MINSfemm
I 2 ! 2 I 3 fT" IT"

of Comparisons # of Swaps

IT I 1

1 Press hereto continue Animation

Figure A.3.3. Selection Sort Algorithm Detailed View Screen

Objective bbsenie how Selection Sort works on larger sets of numbers

Selection Sort in Action

Show me:

ISelcctSort

Select speed
(or piess LEFT moose Wtton daring

algorithm execution to adjust)

J Fastest

♦' Medium

j Slowest

Color Legend
EFl Done & in place
■ Unsorted items
M Item to swap (x)
r~l Comparing (y)
■ Minimum detected

Figure A.3.4. Selection Sort Algorithm Populated View Screen

182

Objective [fest your knowledge about specific aspects of the Selection Sort algorithm

Questions about Selection Sort

^Questionl

^fQuestionZ

J Questions

_1 Question^

Congratulations! Your solution is correct

ILZJIZZJI

fforx=1 toN-1
|MIN = X
ffor y = x+1 to N

I a|y] < a[MIN]
1MIN = y
lendif
lendfor

Figure A.3.5. Selection Sort Algorithm Question Screen

183

B.4 MERGE SORT

Objective [This screen provides the basic idea of the MergeSort algorithm using a real-world example

Menu Introduction to MergeSort

MergeSort takes its name from
the fact that it uses a merge

procedure to create an
ordered sequence. In fact

uses just two simple
operations, one that splits a
sequence into two parts and

another that merges two
sequences into a single,

ordered one.

Starting with a single dataset,
MergeSort splits it into two
halves, recursively sorts the

halves, and merges the halves
back into a single dataset

Show Me The Split Operation

Figure A.4.1 MergeSort Algorithm Conceptual View Screen

Objective Describe the essential behaviors of the P^ergeSort aigorithm and introduce high-level pseudocode

; Topics

Back
Description of MergeSort

MergeSort is a recursive algorithm that uses a DMde-and-Conquer
approach to generate sorted sequences. The essential idea is to divide the
nput list recursively into halves until one element remains, then make

proc mergesort(Array)
it .arras-- rf.nt.wi-. rrnip IMn 1 e-lPir.prtt

^Middle = (length(Array)) / 2
^LeftHalf = mergesort(Ärray[i ..Middief)

order) into a 3rd list (also in order). f

MergeSort has 4 simple operations: ^r

1. Split the input into halves (here it simply finds the midpoint)
2. MergeSort the left hair
3. MergeSort the right half
4. Merge the two sorted halves into a single sorted list

MergeSort calls itself with half-sized fists until it reaches the base case.
The base case is when the input to MergeSort contains only 1 element and
cannot be divided any further. By default, a list of one element is in order, J
so what gets returned is an ordered sequence of 1 element to be mergei^r
with another partial (but ordered) list. ^r

The algorithm for Merging two sequences into one is shown here and
described in more detail bvfollowtna the Meraina link.

Because MergeSort splits the input in half, this algorithm is very efficient,
nvoMna "N ton N" steps. This is much less than the N squared complexity
Bf Bubble and Selection Sort algorithms. So, for a list of 50 elements,
MergeSort requires approximately 300 steps whereas Bubble sort would
require 2500!

RightHott - mergesort(Array[Middle+1 ..N])
ResultArray = merge(LettHatf .RightHalf)
Return ResultArray

else
Return

endif
endproc

Proc merge(LettHalf .RightHalf)
("OOP _ , _ _,_

if leading item rn LeftHalf < leading item in RightHalf
append leading item m LeftHalf to Result

else
append let item in RightHalf to Result

endif
untB LeftHalf or RightHalf is empty
while LeftHalf contains elements

append remaining items from LeftHalf to Result
endwhiie
while RightHalf contains elements

append remaining items from RightHalf 1o Result
endwhiie
return Result

end

Figure A.4.2. MergeSort Algorithm Description Screen

184

Objective Comprehend the structure and function of the MergeSort Aigorrthm

Execution Animation

Detailed Look at MergeSort

The Merge Sort Algorithm

HE
H H

2 J] |T]

Execution Variables

proc mergesort(Array)
if length(Array)>1

Middle = (length(Array)) / 2
J.eftArray = mergesort(Array[t Middle])

RightArray = mergesort(ArrayJMiddle+1 ..N]J
ResultArray = merge(Left Array, RightArray)
return ResultArray

Execution Status Messages

Recursion Depth

r *
Total Calls

Left Middle Right

r^r r~ rr
Comparing _t|_ ^Comparisons Calling MergeSort for elements 1 thru 2 «»Splitting at # 1

Base case reached; Returning element 1 for merge
Base case reached; Returning element 2 for merge
Merging sublists 1 and 2

Comparing 1 and 2 ...moving 2
Pushing leftside element 1

Calling MergeSort for elements 3 thru 4 «»Splitting at ff 3
Base case reached; Returning element 3 for merge
Base case reached; Returning element 4 for merge

Press here to continue Animation

Figure A.4.3. MergeSort Algorithm Detailed View Screen

Objective pbserue and compare how the Mer geSort algorithm works on larger srjls of numbers

Topjcsj

Back

Show me:

iMergeSort j

MergeSort in Action

 Illlllll ml ii .Mil 1

Color Legend

□ Recursive Call
■ pending

Select speed
(or press LEFT mouse button Airing

algorithm execution to adjust)

J Fastest
..)
.) Medium
•
J Slowest

Your Actual
Predictions: Calculations:

Recuisiue Calls: 15 44

Comparisons: 100 130

Maximum Depth 7 5

Figure A.4.4. MergeSort Algorithm Populated View Screen

185

Elective hes est your knowledge about specific aspects of the Merge Sort algorithm

Topics1

Back
Questions about Merge Sort

*f Questionl

*f Question?

<^Question3

^TQuestionl

How many times will MergeSort be called to sort the following input:

Input Array: [6, 5. 4, 3, 2.1, 9, 7J

015 (the original call, 2 calls w/4 items, 4 calls w/2 items, 8 calls w/1 item)

O 7 (the original call, 2 cells w/4 items, 4 calls w/2 items)

i>!3 {the qrjiqinal call. 2 calls w/4 items)!

No. Hint: remember that MergeSort splits the
input a number of tiroes...

OK.

Figure A.4.5. MergeSort Algorithm Question Screen

186

B.5 MERGE ALGORITHM

Objective [This screen provides the basic idea of the Merge algorithm using a real-world example

Menu >

Merging things together is a common task.
For example, automobile traffic merges from

one highway into another. Companies merge,
forming a single corporation where 2 once

existed.

In computers, we often must merge data
from 2 streams into one, and usually we want

the result to be ordered.

Here, we are given 2 stacks of cards that need
to be merged into a single, ordered deck.
Basically, we compare the top item of each

stack and move the smaller of the two into the
first available position of the finished stack.

We continue doing this until all the items have
been moved.

Show Me the Merge Operation

^jQd^.cM^!fl?J^!!!!!l^i

Introduction to Merging

Lets begin

This game pits you against the clock. The object is to click
on the card that the MERGE algorithm would choose in the
least amount of time and with the fewest errors. The timer
begins when you click OK

OK

Figure A.5.1 Merge Algorithm Conceptual View Screen

Understand the basic behavior of the Merge Algorithm and introduce the pseudocode for it.

Description of Merging

The Merge algorithm accepts 2 lists as input parameters. It Proc merge(LeftHalf .RightHalf)
loop

the smaller into the first available position in the ResultArray.

Notice that ResultArray must be at least as large as the
number of elements in both LeftHalf AND RightHalf or it will
overflow. Also note that 3 pointers or indexes are needed to
mark the current position of each of the three arrays being
manipulated (LeftHalf, RightHalf. and Result}.

It is possible that the two lists will perfectly interleave, and
Merge will take one from one list and the next from the other
list. However, this is generally not the case, and so the
algorithm must handle the possibility that theLeftHalf or
RightHalf will be depleted before the other. This is handled
using a condition to exit the upper loop, and another loop to
flush the remaining values from the half that still contains
elements.

The Merge algorithm is quite efficient and only requires one
pass through each array to generate the sorted sequence. A
maximum of N comparisons will be involved, where N is the
length of LeftHalf or RightHalf. This makes it linear in
complexity.

if leading item in LeftHalf < ieädihg item in RightHalf
apr■end leading item in LertHalt to Re:un

else
append feading iiem in RightHalf to Result

endif
until LeftHalf or RightHalf is empty
while LettH*» ■:orit<.mi element?

append remaining items from LeftHalf to Result
endwhiie

while RightHatt contains elements
append iemamiri.i item- Irom Pmrrtmil to Re:uH
endwhiie

return Result
end

Figure A.5.2. Merge Algorithm Description Screen

187

Comprehend the structure and function of the Merge Algorithm

Detailed Look at Merging

Execution Animation The Merge Algorithm

Left Input Right Input

9 6 8

BBSS
Execution Variables

Passes X

rr
Y Z Comparing # of Swaps

I 5 1 1

Proc merge(L,R)
loop

ifL[x]<R(y]
Resuftfz} = L[x]
Increment X and Z

Increment y and z
endrf

_.yü*L5,9r.t i?.e.mPty.
Flush remaining elements from R (or L) to Result

return Result

Execution Status Messages

3eginning the Merge
lomparing L(t) with R(1)...Picking R(1)
:omparing L(1) with R(2)... Moving 1.(1)

Comparing L(2) with R(2)... Moving L(2)
Comparing L(3) with R(2)... Moving L(3)
Comparing L(4) with R(2)...Picking R(2)

Press here to continue Animation

Figure A.5.3. Merge Algorithm Detailed View Screen

Objective pbserue and compare how the Merge algorithm works on larger datasets

■

Topics >
Back

s how me:

Merge

The Merge Algorithm in Action

Select speed
(or press LEFT mouse button during

algorithm execution to adjust)

J Fastest
J
. ,1 Medium
.;
§> Slowest

Left List Riant List

llll ill

 ..m;ilHII!liJllllliElllllllll

Color Legend
Wl from Leftside
■1 from RightSide
I j comparing
B selected value
(~~| used data

Merged List

Figure A.5.4. Merge Algorithm Populated View Screen

188

Objective [Test your knowledge about specific aspects of the Merge a!gorr(hrn

Back 1
Questions about Merging

_l Questionl

; Question?

*f Question3

*TQuestion4

Which of the following is true of the Merge algorithm:

O Elements in the input arrays dont have to be in any particular order

O Elements in ONE of the input arrays MUST be in order

O Elements in BOTH of the input arrays must be in order

®|8oth input arrays must have the SAME numberjjf elements

Sorry...Merge WILL work with arrays ol different
lengths. Please try again.

OK

Figure A.5.5. Merge Algorithm Question Screen

189

B.6 QUICKSORT

Objective [This screen provides the basic idea of the Quicksort algorithm

Introduction to Quicksort Menu
n >

Quicksort works by choosing an arbitrary
element, called the pivot Hem, and

segregates all the items in the group
based on whether they are larger or

smaller than the pivot. When complete, the
group is partitioned into two subgroups,

one composed of elements bigger than the
piuot and another composed of elements
smaller than the pivot. The pivot stands

between the two subgroups.

Show Me the First Partitioning

Next, Quicksort takes these two
subgroups, and performs a Quicksort on
each of theni...eventuaHy stopping when

the sublists contain just 1 value, and are by
default, in order within themselves.

Show Me the Rest

Figure A.6.1 Quicksort Aigorithm Conceptual View Screen

Objective jProvide information about the behavior of the Quicksort algorithm and introduce the pseudocode

Topics
Back

Description of Quicksort

SuickSort is a recursive algorithm that is uses a Divide-anö-Conquer approach to
generate sorted sequences. The essential idea is that it is taster and easier to sort
2 small lists than 1 large one. Quicksort has 3 simple operations:

1. Partition the input into halves around a selected Pivot value
2. QuckSort the half leading up to the Pivot
3. Quicksort the halt following the Pivot

The key to QuckSort is in the Partitioning step. Using one of the elements as a
pjvpt value, Partitioning hvolves scanning the elements and moving those thatlSFfT
smaller than the Pivot to the left side of the array, and moving those that are larger
han the Pivot to the right side of the array. This movement is performed 'in-place'
so that temporary storage is not needed (hence the use of ScanL, ScanR and
swap).

When Partitioning is finished, we are guaranteed to have at least 1 element in
ilacc (the pivot), and that all elements to the feft of the pivot are smaler, and all
hose to the right are larger. Quicksort catts itself with the two sub-lists until it
eaches the base case.

The base case is when the input to QuckSort contains only 1 element and cannot
ae divided any further. By default, a fist of one element is h order, so what gets
eturned is an ordered sequence of 1 element.

Because Quicksort splits the input in smaller parts, this algorithm is very efficient,
nvolving as few as "N Log N" steps. This is much less than the N-squared
^omplexSy of Bubble and Selection Sort algorithms. So, for a list of SO elements,
WergeSort requires approximately 300 steps whereas Bubble sort would requre
2500! However, the choice of pivot plays a crucial part in the efficiency. A bad
choice that doesnt lead to balanced partitions results in N-squared complexity!
ollow this link to learn more about pivot selection.

.E^..®!**«!^
if LeflEnd and RlghtEnd mark more than 1 etement m ARRAY

irWalize ScanR to LeftEnd and ScanL to RkjhtEnd
repeat

whrteScanL > S^arÄ and ARRAY[ScanR] < Pivot
increment ScanR

while^ScanL >. Scan^srMh^A^^anL] > Pivot
decrement ScanL

swap ArrayfScanR] and Array[ScanL]
increment ScorR and decrement ScanL
until pointers have crossed over each other

swap Pivot into position marked by ScanR
_ARRAY[LeftEnd .JNvot-1] = quicksort(ARRAY[LettEnd .. Pivot-1])
.Jy?*!^ RTghtEndj)

return ARRAY[LeftEnd..RightEnd]

endproc

Figure A.6.2. Quicksort Algorithm Description Screen

190

Objective Comprehend the structure and function of the OutckSort Algorithm

Detailed Look at Quicksort

Execution Animation

1 2

Execution Variables

Recursion Depth Let

I 4
Pivot

I 2
Right

! s
Comparing ((Comparisons

! 13

ttSuuaps

I 3

Total Calls

I 4

[2j [sj L±J \7j LU
m

9

proc Quicksort(ARRAYILeftE^^^^
if LeftEnd and RlghtEnd mark more than 1 element jn ARRAY

initiaize ScanR to LeftEnd and ScanLJo RightEnd
repeat

while ScanL > ScanR and ARRAY(ScanR| < Pivot
increment ScanR

while ScanL > ScanR and ARRAY[ScanL] > Pivot
decrement ScarL

swap ArraytScanR] and Array[ScanL j
increment ScanR and decrement ScanL
until pointer•: have cro:f.e>;i ovf-r each other

;wap Pivot into portion mar<eg by ScanR
ARRAY[LeftEnd Pivot-1] = qutcksortf;ARRAY[LettErtd .. Pivot-1])
ÄRRÄY[^

return ARRAY[LettEnd RightEnd]
endif

endproc

Execution Status Messages

.ooking teft for value bigger than 4
Swapping 4 with 5
Partitioning complete at this level; putting pivot into place...
Calling Quicksort for elements 2 thru 3 using Pivot=2

Press hereto continue Animation

Figure A.6.3. Quicksort Algorithm Detailed View Screen

Objective bbserue how Quicksort works on larger sets of numbers

Topics;

Back
>

Show me:

jQuickSort

Quicksort in Action

Color Legend

■I pending or done
^ swapping
■a scan right
EH scan left

Selects
pivot strategy:

_| Leftmost Element

j Random Element

#' Median-of-3

Select speed
(or press LEFT moose button dining

algorithm execution to adjust)

j Fastest
j
J Medium

J Slowest

Your
Predictions: Ca

Actual
culations:

Recursive Colls: 5D 33

Compdiisons: 100 181

Swops: 60 5?

Maximum Depth: 7 8

Figure A.6.4. Quicksort Algorithm Populated View Screen

191

Objective [Test your knowiedge about specific aspects of the Quicksort algorithm

{Topics]

■■''■■■'-f, Ö*ck I'--
Questions about Quicksort

if Qucstionl

*TQuestion2

_J Questions

Quet~^^^

Correct!

Which of the following is true for Quick Sort:

O Quick Sort generally makes N swaps

® jAfter the PARTITION step, the pivot valuejs alwaysjmjKOfjer £oj5!tion|

O Must always use the last value as the pivot

OK

Figure A.6.5. Quicksort Algorithm Question Screen

192

B.7 SHORTEST PATH

Objective [This screen provides the basic idea of the Shortest Path algorithm using a real-world example

Introduction to Shortest Path Algorithms < Menu >

Dallas

Determining the shortestfleast-cost path
between Hnked objects is a common problem

we deal with. For example, in the airline
industry, cities are linked by jets that often stop

in other cities on the way. Consumers often
find that the cheapest route is not the shortest

one, as depicted in the example below.

The Shortest Path (SP) algorithm finds the least
costly path from a selected starting point to

every other point of a connected group. It does
this by considering the possible routes

between places in a systematic way: from the
starting point, the cheapest of the possible

flights one city away is chosen. Next, it
chooses the cheapest of the flights from either

the starting point or the city just chosen one
hop away. On the 3rd pass, the algorithm picks $ IJQ
the 3rd shortest route, then the 4th, and so on

unto aH cities have been visited. Each pass
finds the shortest path to one more city. Try

the example below to see how it works:

Chicago

Show the Example
If you feel up to a challenge, you can try solving

tlteSP problem for yourself. Click on the
button below to set up some fictichnis rates,

then click on the cities that you think are on the
SP from Montgomery to Cancun

Let mc try j
Caitran!

Figure A.7.1 Shortest Path Algorithm Conceptual View Screen

Objective

B
Topics! ----'—--
Back

understand the basic behauior of the Merge Algorithm and introduce the pseudocode for it.

Description of Dijkstras Shortest Path Algorithm

Dijkstras algorithm methodically solves the shortest path problem using
several simple steps:

1. Initialize all vertices as UnVisited with infinite distance
Pick a starting vertex and make its distance 0

2. Repeat until all vertices have been visited:
a. Find least-cost UnVisited Vertex and can it J
b. Mark Jas Visited
c. For each vertex R adjacent to J

if the path to R through J is less than the current path to R
Update the distance to R and make J the parent of R

Step 2 is executed as many times as there are vertices hi the graph.
Each iteration brings another vertex out of the UnVisited group,
explores (checks the distance to) its neighbors, and may or may not
involve reducing their paths. Each vertex will be Visited Just once, but
will be explored multiple times, once for each adjacent neighbor (why is
this?). If the nranh has no cycles, then paths will never be updated once
found. However, If cycles are present, then a vertex, once Visited, wffl
be re-encountered with a possibly shorter path through another vertex.
Notice that this algorithm only works when positive edge weights are
used; negative weights in a cycle in a greedy algorithm like this leads to
incorrect results.

Efficiency hinges on the method used to find the minimum in step 2a. A
brute force approach leads to N-Squared complexity, while using a
priority queue reduces the complexity to H-Loa N.

Initiailization: mark each vertex as UnVisited & infinite distan
picl- a rtartmg point and make iH di^n.:? = n
repeat

J = vertex with minima! distance of those not yet Visited
mark J as Visited
tor each vertex R still not Visited

if there is an edge from J to R
IT 0is1»ice|J| • E»:i?VJtiStart.J Ri • D.st«nc*|R|

HstancejR]« Distance^)] + EdgeV\t(Start,J,R)
ParentfRl = J

until all vertices have been Visited

Figure A.7.2. Shortest Path Algorithm Description Screen

193

Objective Comprehend the structure and function of the Quicksort Algorithm

ri ■'■"■'■'!
<i Menu > Detailed Look at Shortest Paths

Execution Animation Window

™— EEEHEHH

Pseudocode
Initialize vertices: UnVisited wAirfinite distance
pick a starting point and make its distance - Ö
repeat

J = UnVisited vertex with least distance
...JJMrt jMWsjteir__ ___ ___ _

visited
JjiqR

it Distance|J| • EdaeWt<Start,J,R) < Oistance|R)
DistancefRl = Distance!JJ ♦ Ed8eW(Stärt,J,RJ

until all vertices have been Visited
Print Path _ ___

Execution Variables Execution Status Messages

Vertex Known Parent Distance Starting Vertex | |
1 n n 9999
2 0 0 9999 Vertex J | |

3
4

0
0

0
0

9999
9999

Vertex R | |

5 0 0 9999 Current Dist |)
R n n 9999
7 0 0 9999 Dlst via J | |

V

Figure A.7.3. Shortest Path Algorithm Detailed View Screen

Objective Observe and compare how the Shortest Path algorithm works on larger graphs

< Menu >

Step 1: Create graph

branching Factor

O Light

§> Medium!

OHeavy

] 2: Set animation
tempo

Step 3: Start animation
by clicking on
any verteil

Step * RightCiick on
any node to
show path back
to StartinnPoint

Dijkstra's Shortest Path Algorithm
Legend

©Stalling Point
©Not Visited

Your Actual
Predictions: Calculations:

Visited: 0
Comparisons: 0
Shorter Paths: 0

Figure A.7.4. Shortest Path Algorithm Populated View Screen

194

Objektivs [fest your knowledge about spenfic -ISJJCCIK of Dljks'fa's Shortest Path .ilgorstiuT^

Topics
Back

Questions about Shortest Paths

J Questionl

j QuestionZ

J Question3

^Questionl

How many times will vertex C manipulated in solving the shortest
path:

2

(Visited once, explored 3 times]

O Visited once, explored Z times

O Visited 2 times, explored 3 times

() Visitprf nnrtp- explored once

Correct! Node C is explored when nodes B,E,F
are visited because C is adjacent to them.

OK

Figure A.7.5. Shortest Path Algorithm Question Screen

APPENDIX B: MATERIALS USED DURING EXPERIMENTS

This appendix contains examples of materials used for the experiments described in this

dissertation. For brevity's sake, only the'post-tests are shown; the pre-tests for each experiment

had the same form and type of question as the post-test, but with different data or slightly lower

complexity.

D.I. CONSENT FORM

The consent form that each subject read and completed is shown on the following page.

195

196

Auburn University
Auburn University, Alabama 36849-5347

College of Engineering

Computer Science and Engineering Telephone (334) 844-4330
107 Dunstan Hall

Research Project Information
"Rethinking Algorithm Animations "

*
Thank you for volunteering to participate in our research project at Auburn University. This project will
explore the effectiveness of several methods of teaching algorithms. In the long term, your inputs might
help us show that the ways we currently teach algorithms and other abstract concepts could be
significantly improved, not only for better retention but for higher student satisfaction. In the short term,
your participation will give you exposure to exciting new teaching techniques as well as a good foundation
in several popular computer science algorithms.

As a participant, you will be asked to do the following:
• take a written, prior-knowledge survey (about 15 minutes)
•participate in an observation session with a written post-test (about 60 minutes)
• take a follow-up survey (about 20 minutes)

Additionally, we ask that you not not discuss this session with other people (to avoid influencing their
possible participation in any way).

Please remember that we are evaluating OUR SYSTEM AND NOT YOU! The tests you take and the data
we collect during the observation session will be totally anonymous; you won't be identified as an
individual in any of the data we collect, nor named in any of the reports we develop after this research.
You cannot fail any part of this session. Your participation is needed to help us identify usability
problems with our system and if our animation system helps a student learn more effectively. Besides
making a significant contribution to computer science research and learning more about selected popular
algorithms, participation will provide homework credit for COMP0220 and COMP0360 students.

There are no known risks associated with this experiment. During the experiment, you may request that
your data not be used in our analysis, and we'll destroy it from our files. You may withdraw from the
session at any time, although we hope you'll stick with it through to the end.

We truly appreciate your time and willingness to participate in this computer system evaluation.
Remember, we are not evaluating you, but our system, and therefore, you cannot fail any part of this
session. If you have any questions, please contact any of the individuals listed below:
Principal Investigator Dr. N. Hari Narayanan (334) 844-6312 narayan@Eng.Auburn.edu
Research Assistant Steven Hansen (334) 270-9795 hansensr@mindspring.com
Research Assistant Dan Schrimpshier (334)844-2158 schridi@Eng.Auburn.edu

For more information regarding your rights as a participant you may contact Ms. Jeanna Sasser
(844-5966) or Dr. Leanne Lamke (844-3231) at the Office of Human Subjects.

Your session is scheduled on at in .
date time location

Thank you for your participation!

197

D.2. DEMOGRAPHIC SURVEY

The demographic survey shown on the next page was used to gather information from prospective

participants. This information was used to help create the randomly-assigned matched groups used in

each of the experiments of this study.

198

Demographic Information
Disclaimer: The following information is requested to allow us to form lab groups that have similar backgrounds and capabilities.

This information will not be disseminated in any way and will not affect your standing in class.

Name: Email address: Your anonymous ID: (any 3-digit code
that we can use to identify your results)

Please indicate the approximate score you obtained on any of the tests below that you may have taken:
ACT SAT. GRE

What is your approximate overall GPA?
0 0 0 0 0 0

4.0 3.5 3.0 2.5 2.0 1.5
What is your approximate GPA in computer science classes?

0 0 0 0 0 0
4.0 3.5 3.0 2.5 2.0 1.5

What was your approximate grade in CSE200 (or its equivalent)')

O 0 0 0 0 0
ABC D F Didnt

Take It
How many years of college have you completed?

0 0 0 0 0 0 0
1 2 3 4 5 6 7 +

What is the highest degree you have earned?
0 0 0

Hiqh School Bachelor's Degree Master's Deg ree
What degree are you attempting to earn now?

0 0 0
Bachelor's Degree Master's Degree Doctoral Degree

Have you participated in Algorithm Visualization Research at Auburn University before?
0 0 0

No, never Yes, during Fall 97 Yes, during Winter 98
If yes:

What did you like about it?

What didn't you like?

The Algorithm Visualization Lab sessions will probably take place in 2-hour sessions on the last two
Fridays in May. Please indicate the times during which you have a conflict and could not attend

o
11-1

o
12-2

o
1-3

0
2-4

o
3-5

o
4-6

o
5-7

199

D.3. USER SATISFACTION SURVEY

The survey shown on the following pages provided subjective feedback about student impressions

of the HalVis system.

200

Satisfaction and General Impressions
Disclaimer: The following information is requested to allow researchers to information to improve the program with which you

interacted recently. This information will not be disseminated on an individual basis and will not affect your class standing.

Please rate each of the items listed below in terms of how effective you thought it was
Negative

Use of textual descriptions (pop-ups)

Use of audio

Use of color to highlight actions

Use of analogies and examples to introduce algorithms

Use of hyperiinking to find related information

Explanation of learning objectives on each screen

Use of pop-up questions

Clarity of button and menu names

Positive/
Effective

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

o
0
o
o
o
o
o
o

Extremely
Negative

o
o
o
o
0
0
o
o

No
Opinion/

Dont recall

o
o
o
o
0
o
o
o

&r-'

ÄS3EE2 DE

~ The following questions ask you to rate aspects of the screens that described
the algorithm specifics, containing the animations and the pseudocode (shown

==±—, in the thumbnail diagram to the left)

Effectiveness of the blue textual introduction explaining
the algorithm prior to the animation

Use of textual explanations (event messages) during
animation

Highlighting the pseudocode statements during the
animation

Counters that reflected the progress of the algorithm

Ability to alter the speed of the animation

Ability to rerun the animation

Comment on the amount of information presented

Did you try changing the data?

How many times did you run the animation?

Very
Positive/
Effective/

Helpful

0

Positive

0

Negative

0

Extremely
Negative/
Useless/

Confusing

0

No
Opinion/

Dont recall

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Excessive Perfect Sparse

Yes No

4+ 3 2 1 0

201

S3

.kUliUdikiikll!''^
The following questions ask you to rate aspects of the screens that illustrated the
performance of the algorithms using the animated bars (shown in the thumbnail
diagram to the left)

*
What was your impression of this screen

Very
Positive/
Effective/

Helpful
0

Counters that reflected the progress of the algorithm 0

Ability to predict the performance of the algorithm ' 0

Ability to rerun the animation 0

Ability to alter the speed of the animation 0

Use of colors to illustrate the actions of the algorithm 0

Comment on the amount of information presented Excessive

How many times did you run the animation? 4+

Circle the data case you used most best
case

Positive Negative Extremely

0 O

O O

O O

O O

O O

O O

Perfect

3 2

average
case

Useless/
Confusing

O

O

O

O

O

O

No Opinion/
Dont recall

O

O

O

O

O

O

Sparse

0

worst case

Please provide your overall impression

What was your impression of this program?

What was your impression of the user interface?

What was your impression of the navigation?

Very
Positive/
Helpful

Very Easy
to Learh

Very
Intuitive

Positive

Easy to
Learn

Intuitive

Negative

Hard to
Learn

Difficult

Extremely
Negative/
Confusing

Rigid

No Opinion/
Dont recall

No Opinion/
Dont recall

Frustrating No Opinion/
Dont recall

If you had to learn more algorithms in the future, which technique would you prefer to use, if it was available:
O O O

This Animation System Traditional Text No Opinion

Please comment on what you liked the most:

Please comment on anything you didn't like about this program:

202

D.4. EXPERIMENTS WITH TEXT

D.4.1. POSTTEST FOR EXPERIMENT IA

Each test included a cover page with space for the subject to enter his or her identification code (a

3 digit code that gave anonymity to each participant but allowed us to track performance through

the phases of the experiment), and the disclaimer shown below:

Knowledge Survey

NOTE: Your answers to these questions WILL NOT affect your
grade in any way; they merely help us understand how effective
the experimental material presented to you about algorithms was.
Please answer each question to the best of your ability.

Please Enter Your ID:
(this is the 3-digit code you picked to
identify your participation efforts)

203

la. Does the pseudocode here re-order
the elements in ARRAY into descending
or descending order?

lb. Make the necessary changes to the
pseudocode above to produce an
ascending sequence (unless it already
does)

1- Procedure MergeSort(ARRAY)
2- if length(ARRAY) > 1
3- Middle = length(ARRAY)/2
4- LeftArray = MergeSort(Array[1..Middle])
5- RightArray = MergeSort(Array[Middle+1..N)
6- ResultArray = Merge (LeftArray, RightArray)
7- Endif
8- Return ResultArray
9- EndMergeSort

10- Proc Merge(LeftHalf,RightHalf)
11- loop
12- if LeftHalfM > RightHalf[y]
13- Result[z] = LeftHalf[x]
14- Increment X and Z
15- else
16- Result[z] = RightHalf[y]
17- Increment y and z
18- endif
19- until RightHalf or LeftHalf is empty
20- Flush remaining elements from RightHalf

(or LeftHalf) to Result
21- return Result
22- endMerge

3. Using the algorithm above on the data shown below, indicate how many calls to MergeSort
would be needed to place the data into ascending order.

ARRAY:

Before 52 91 41 34 10 55
of calls:

4. If the values f52,91,7,41,34,10,551 are passed to MysterySort above, show:
the value(s) passed as parameters into MergeSort when line 4 is
executed the first time:

the value(s) passed as parameters into MergeSort when line 5 is
executed the first time:

204

5. If the values [52,91,7,41,34,10,55] are passed to MergeSort, show the value(s) returned in
ResultArray following each recursive call to MERGE on line 6

Call# ResultArray

*

6. The MergeSort algorithm will be used to sort an array of 1000 test scores. Which of the
following is true:

(a) The sort is fastest if the original scores are in random order

(b) The sort is festest if the original scores are ordered from smallest to largest

(c) The sort is fastest if the original scores are ordered from largest to smallest

(d) The sort is the same, no matter what the order of the original elements.

205

D.4.2. POSTTEST FOR EXPERIMENT IB

Each test included a cover page with space for the subject to enter his or her identification code (a

3 digit code that gave anonymity to each participant but allowed us to track performance through

the phases of the experiment), and the disclaimer shown below:

Knowledge Survey

NOTE: Your answers to these questions WILL NOT affect your
grade in any way; they merely help us understand how effective
the experimental material presented to you about algorithms was.
Please answer each question to the best of your ability.

Please Enter Your ID:
(this is the 3-digit code you picked to .
identify your participation efforts)

206

Bla. Does the pseudocode above re-
order the elements in ARRAY into
ascending or descending order?

Bib. Make the necessary changes to the
pseudocode above to produce an
ascending sequence (unless it already
does)

1- Procedure MergeSort(ARRAY)
2- if length(ARRAY) > 1
3- Middle = length(ARRAY)/2
4- LeftArray = MergeSort(Array[1.. Middle])
5- RightArray = MergeSort(Array[Middle+1..N)
6- ResultArray = Merge (LeftArray, RightArray)
7- Endif
8- Return ResultArray
9- EndMergeSort

10- Proc Merge(LeftHalf, RightHalf)
11- loop
12- if LeftHalf[x] > RightHalf[y]
13- Result[z] = LeftHalf[x]
14- Increment X and Z
15- else
16- Resultfz] = RightHalf[y]
17- Increment y and z
18- endif
19- until RightHalf or LeftHalf is empty
20- Flush remaining elements from RightHalf

(or LeftHalf) to Result
21- return Result
22- endMerge

B2. The MergeSort algorithm will be used to sort an array of 1000 test scores. Which of the
following is true:

(a) The sort is dramatically faster if the original scores are in random order

(b) The sort is dramatically faster if the original scores are ordered from smallest to largest

(c) The sort is dramatically faster if the original scores are ordered from largest to smallest

(d) The sort is about the same, no matter what the order of the original elements.

B3. If the following data was passed to the Merge procedure on line #10, indicate what would be
returned in the array called Results. Use the unaltered version of the algorithm.

Left Array Right Array
5 26 34 9 27 30 33 71

Result Array

207

B4. Using algorithm above on the data shown below, indicate how many calls to
MergeSort would be needed to place the data into ascending order.

ARRAY:

Before 52 91 7 41 34 10 55
of calls:

B5. If the values [52,91,7,41,34,10,55] are passed to MergeSort, produce a diagram
showing the sequence of calls. Use the unaltered version. Be sure to indicate the values
passed as inputs to each call and the results that are passed back upon completion of the
call.

e.g. ProcedureName DMPUT:(52, 91, 7,41, 34,10, 55)
RETURNS (??, ??, ??, ??, ??, ??, ??)

208

Cla. Does the pseudocode above
re-order the elements in ARRAY
into ascending or descending order?

C2. Make changes to the
pseudocode above to produce an
ascending sequence (unless it
already does)

1- Procedure QuickSort(ARRAY[L.R])
2- if length(ARRAY) > 1
3- Select Pivot and put in ARRAY[L]
4- initialize ScanR = L-1 and ScanL = R
5- repeat
6- while ScanR > ScanL and ARRAY[ScanR] < Pivot
7- increment ScanR
8- while ScanR > ScanL and ARRAY[ScanL] > Pivot
9- decrement ScanL
10r swap ARRAY[ScanR] and ARRAY[ScanL]
11 - increment ScanR and decrement ScanL
12- until ScanL <= ScanR
13- swap Pivot in ARRAY[L] with ARRAY[ScanR]
14- ARRAY[L.ScanR-1] = QuickSort(ARRAY[L. ScanR-1])
15- ARRAY[ScanR+1..R]=QuickSort(ARRAY[ScanR+1.. R)
16- else
17- return ARRAY[L.R]
18- endif
19-endproc

C3. What can be said after k (some arbitrary number) of calls to Quicksort:

(a) About k2 comparisons will have been made

(b) At least k elements will always be in place regardless of the order of the input

(c) Exactly k-1 Merge operations will have been performed

(d) No more than k swaps will have been made.

(e) None of the above

209

C4. If the following data was passed to the Quicksort procedure, indicate the contents of the
ARRAY after the first execution of the loop depicted in lines #5-13. Use the unaltered version of
the algorithm in question #Cla.

33 26

Original Input
ARRAYfL.-RI

44 71 21

Result after'1st Partitioning (lines #5-13)
ARRAYrL..ScanR-l] Pivot ARRAYfScanR+l..R1

C5. Using the algorithm above on the data shown below, indicate how many calls to Quicksort
would be needed to place the data in the array below into order. Use the unaltered version in
question #C1.

ARRAY:

Before 33 26 44 9 71 21 6
of calls:

C6. If the values [33, 26, 44, 9, 71, 21, 6] are passed to Quicksort, produce a diagram showing
the sequence of calls. Use the unaltered version. Be sure to indicate the values passed as inputs to
each call and the results that are passed back upon completion of the call.

e.g. ProcedureName INPUT:(33, 26, 44, 9, 71, 21, 6)
RETURNS (??, ??, ??, ??, ??, ??, ??)

210

D.5. EXPERIMENTS WITH TEXT AND EXERCISES

D.5.1. POSTTEST FOR EXPERIMENT H

Each test included a cover page with space for the subject to enter his or her identification code (a

3 digit code that gave anonymity to each participant but allowed us to track performance through

the phases of the experiment), and the disclaimer shown below:

Knowledge Survey

NOTE: Your answers to these questions WILL NOT affect your
grade in any way; they merely help us understand how effective
the experimental material presented to you about algorithms was.
Please answer each question to the best of your ability.

Please Enter Your ID:
(this is the 3-digit code you picked to
identify your participation efforts)

211

1. Show the order of elements in ARRAY after the first pass of an ascending Selection Sort

algorithm:

ARRAY
Before 4 2 1 5 3
After
1 pass

2. How many swap operations would occur in the problem described above (first pass of
ascending Selection Sort)?

3. In a sentence or two, describe the basic behavior of the Selection Sort algorithm

4. Show the order of elements in ARRAY after the first pass of an ascending Bubble Sort
algorithm:

ARRAY

Before Don Carl Ann Eric Bev
After 1

pass

5. How many swap operations would occur in the problem described above (first pass of
ascending Bubble Sort)?

6. In a sentence or two, describe the basic behavior of the Bubble Sort algorithm

212

7. The psueudocode to the right
implements which popular sort algorithm?

for x = N-1 downto 1
for y = N downto N-x+1

if ARRAY[y] < ARRAY[y-1]
swap ARRAY[y] and ARRAY[y-1]

endif
endfor

endfor

8a. Does the pseudocode above re-order the elements in ARRAY into descending order?

8b. If not, make pen and ink changes to alter the pseudocode above to produce a descending
sequence

9. Using the algorithm shown in problem 7 above, how many comparisons and swaps would be
made to produce a sorted sequence given the input [1,2,3,4]

Comparisons Swaps

10. Using the modified algorithm below, how many comparisons and swaps would be needed to
produce a sorted sequence given the input [1,2,3,4]?

Comparisons Swaps for x = N-1 downto 1
SORTED = 1
for.y = N downto N-x+1

if ARRAY[y] < ARRAY[y-1]
SORTED = 0
swap ARRAY[y] and ARRAY[y-1]

endif
endfor
if SORTED = 1

exit
endif

endfor

213

11. This psueudocode to the right
implements which popular sort algorithm?

forx=1toN-1
CHOICE = x
for y = x+1 to N

if ARRAY[y] > ARRAY[CHOICE]
CHOICE = y

endif
endfor
swap ARRAY[CHOICE] and ARRAY[x]

endfor

12a. Does the pseudocode above re-order the elements in ARRAY into descending order?

12b. If not, make pen and ink changes to alter the pseudocode above to produce a descending
sequence

13. Using the algorithm above, how many comparisons and swaps would be made to produce a
sorted sequence given the input [1,2,3,4]

Comparisons Swaps

14. Using the modified algorithm below, how many comparisons and swaps would be needed to
produce a sorted sequence given [1,2,3,4]?

Comparisons Swaps for x= 1 to N-1
CHOICE = x
for y-= x+1 to N

if ARRAYfy] > ARRAYfCHOICE]
CHOICE = y

endif
endfor
if CHOICE not = x

swap ARRAYfCHOICE] and ARRAYfx]
endif

endfor

214

15. Circle the item(s) below that are true:

A On average, Bubble Sort makes fewer swaps than Selection Sort

B On average, Bubble Sort makes more swaps than Selection Sort

C On average, Bubble Sort makes the same number of swaps as Selection Sort

16. After k (some arbitrary number) passes, the first k items are always in the proper place for:

A Bubble Sort

B Selection Sort

C Both Bubble Sort and Selection Sort

D Neither Bubble Sort nor Selection Sort

17. Organize the values [1,2,3,4,5] into an input sequence that causes the standard Bubble Sort
algorithm to make fewer swap operations than the Selection Sort algorithm.

Answer:

215

D.5.2. HANDOUT FOR TEXT GROUP OF EXPERIMENT H

The following pages are the handout we crafted from our review of the sections of sorting

algorithms from 19 commercially available textbooks.

216

Sorting Algorithms

Learning Objectives:

• Understand the basic concepts of sorting algorithms

• Leam the construction and behavior of specific sorting algorithms

• Predict how sort algorithms will operate on a given data set

• Be able to modify and find errors in sorting algorithms

Introduction

Sorting is one of the more interesting topics in computer science and in the study of algorithms, not
only because sorting is a common and useful problem but also because there are many different
ways one can sort a list. The various approaches are interesting to study and understand. They
represent different ways of solving a similar problem. Some approaches are easier to understand
than others, some are more take less time, some use less space and some are better in situations
where the order of the lists to be sorted is known in advance.

The input to a sorting problem is an unordered list of elements, typically numbers or letters. The
task is to produce the list in a particular order, either ascending or descending, based on each
element's lexicographic value. A dictionary and a phone book are examples of alphabetically
ordered lists in ascending sequence. Examples of numerical sequences are shown below, depicted
as both horizontal and vertical lists of numbers.

Unordered

10

Ascending Order

10

Descending Order
10

Unordered

Ascending Order

Descending Order | 10

6 4 8 10 1

1 4 6 \ 8 10

10 8 6 4 1

217

Bubble Sort

The bubble sort algorithm uses a simple scheme. Each iteration puts the smallest unsorted
element in its correct place, changing places with other elements in the list. The first iteration puts
the smallest element in the first position. Starting with the last element, we compare successive
pairs of elements, swapping whenever the bottom element of the pair is smaller than the one above
it. In this way, the smallest element "bubbles" up to the top or front of the list. The next iteration
puts the smallest element in the unsorted part of the list into the second position, using the same
technique.

The figures below walk through sorting a 5-element list. Each row represents a comparison of the
items in bold print, and arrows are used to show items that were exchanged or not. Each pass is
indicated separately tor easier reading. Note that in addition to putting one element in its proper
place, each iteration causes some intermediate changes in the order of the other elements also.

The first traversal puts the value 1 into place at the head of the list, making 4 comparisons and 4
swaps in the process. Note that this first traversal does not guarantee the entire list is sorted—it
only ensures that the first element is.

First Pass

Before

1st comparison

2nd comparison

3rd comparison

■ith 4 comparison

[1] [2] [3] [4] [5]

10 4 8 6 1

X
10 4 8 1 ' ~6

*
10 4 1*"* 8 6

X.
10 l" ^4 8 6

10 4 8 6

218

The second traversal will bring the second largest element to its proper resting place. Notice that
only 3 comparison operations were needed. A fourth was not required since the first element is
already in position. Also notice that only 2 swap operations were needed, since the elements in the
second comparison were not out of order as a pair.

Second Pass

m PI PI [4] [5]

Before 1
(in place)

10 4 8 6

* X
1st comparison ■•iv r

" (mptaoe)
10 4 6 8

t t
2nd comparison

Splicer
10 4 8 6

V,
3rd comparison fff*

fmphce)
*'f4f7

fmnboe)
^10 8 6

The third traversal will bring the third largest element to its proper resting place, requiring 2
comparison operations and 2 swap operations.

Third Pass

[i] [2] PI [4] [5]

Before .-1:V:
(mptae)

■'■:v4---
fmptaoe)

10 8 6

X
1st comparison mm

Gnphet»

.,;4.:
fmpteoe)

10 6 8

2nd comparison

fm*oe>
a 6 x 10 8

The fourth traversal brings the fourth element into position, making 1 comparison and 1 swap.

Fourth Pass

[il [21 [3] [4] [5]

Before 0*m
(in place)

10 8

X
1st comparison

finches) (inpltoe) Cmpbcr) fmptice) finphce)":

219

Before writing down the algorithm in more detail, it should be pointed out that the second traversal
need not extend to the first element, since by the time the second traversal starts, the first position
in the list already contains its rightful tenant: the smallest value in the list. Similarly, the third
traversal need not consider the first 2 elements, etc. This leads to an algorithm that carries out N-l
such traversals (why not N?) to produce the final list. On each pass or traversal, the algorithm
need only compare N-l elements in its first traversal, N-2 elements in the second, N-3 in its third,
and so on. Thus the bubble sort algorithm involves two nested loops. The outer loop controls the
number of (successively smaller) passes or traversals through the array. The inner loop controls
the pairs of adjacent entries being compared.

for x = N-1 downto 1
for y = N downto N-x+1

ifA[y]<A[y-1]
swap the values in A[y] and A[y-1]
endif

endfor
endfor

220

Selection Sort

The basic idea of selection sort is to make repeated selections from a list of values, moving the
selected value into its proper position in the list. On the first pass, find the smallest number in the
list and exchange it with die one in the first position(A[l]). On the second pass, find the smallest
number from the values in positions 2 on down and exchange it with A[2]. On the third pass, find
and place the smallest remaining value into the third position, and so on until there are no more
values in the unsorted portion of the list. Each pass puts one element into proper order, and
reduces by one the number of elements in the unsorted portion.

The figures below walkthrough sorting a 5-element list. Each row is labeled as a comparison
between hems in bold print or a swap, wiht arrows showing items that were exchanged. Each pass
is indicated separately for easier reading. Note that in addition to putting one element in its proper
place, each iteration causes some intermediate changes in the order of the other elements also.

The first pass involves comparing each of the values to find the smallest, keeping track of its
position (call it MIN) until the last value has been considered. Then that value indicated by MIN is
swapped with the item in position 1. Here, 4 comparisons are made, and one swap. Note that this
first traversal does not guarantee the entire list is sorted—it only ensures that the first element is.
The first pass produces:

First Pass

Before

[i] [2] P] [4] {51

10 4 8 6 1

1st comparison 10 4 S 6 1

2nd comparison 10 4 8 6 1

3rd comparison 10 4 8 6 1

4th comparison

Swap

10 -. 4 8 6 1

L 4 8 6 10

221

The second pass can ignore the value in the first position and begin comparing values in positions 2
through 5. Notice that no swap is needed, since the value "4" was already in its proper position (in
A[2]), yet 3 comparisons are made.

Second Pass

Before

[i] [2] PI [4] [5]

poll 4 8 6 10

1 comparison AIM 8 10

,nd 2na comparison ' 1 /
>j*"6nphce>

10

3rf comparison ^^ 10

;

„-„4.-. 8 6 10 Swap

The third pass will locate the smallest value in positions 3-5 and place it in position 3. This
requires 2 comparison operations and one swap.

Third Pass

Before

1st comparison

2nd comparison

Swap

[1] [2] [3] [4] [5]

;-;!•■■;•

' (ninon
4

Gnpitce)
8 6 10

finttaeV
a-4- ; 8 6

■la
10

1.
Gnuix») fiBPhce)

8 6 10

*

' GnpbceV
.i..-4ii,--: r ...$r

' (mutes)
^ 8 10

222

The fourth and final pass yields the sorted list, using one comparison but not needing any swap
operations:

[i] [2] [3] [41 [5]

§1111 PÄ§ 10

&£«£
fe JppWISäSS

m&£. <*>**>
8 10

Fourth Pass

Before

1st comparison

Swap

Before writing the algorithm for this sorting procedure, note the following:
1. If the array is of length N, then it takes N-l steps to put it into order
2. We must be able to find the smallest number. Numbers that are equal are not considered

smaller than each other.
3. We need to exchange appropriate array components that are out of order (inverted)

"

SÄ
% (muitoeV

8
§:'(S^ri•oü■'^

Lv;i,ö

for j = 1 to N-1
for j = i to N

MIN = the index of the smallest value encountered
endfor

swap the values in A[J] and AfMIN]

223

Questions

Use the data set below to consider answers for questions 1-5:

[1] [2] [3] [4]

Initial Values

[5]

8 4 26 2 7

Bubble Sort Selection
Sort

Which element will move into the leftmost position on the
first pass?
How many comparisons will be needed to complete the
first pass?
How many swaps will occur in the first pass1?
How many passes will it take until the remaining values
are in place?
Write the order of the elements as they would appear at
the completion of the second pass

6. The lines to the Bubble Sort algorithm are out of sequence below. From memory, try
to number them to represent the correct sequence

Line # Algorithm Statement
endfor
for i = N-l downto 1
compare A[J] with A[J+1], exchanging if necessary
for j = N downto N-i
endfor

7. Do the same as problem #5 for the Selection Sort algorithm below:

Line # Algorithm Statement
forj = itoN
endfor
exchange the values of AfJI and APVflN]
MIN = the index of the smallest value encountered
for j = 1 to N-l
endfor

224

D.6. EXPERIMENTS WITH LECTURES

D.6.1. POSTTEST FOR EXPERIMENT HI

Each test included a cover page with space for the subject to enter his or her identification code (a

3 digit code that gave anonymity to each participant but allowed us to track performance through

the phases of the experiment), and the disclaimer shown below:

Knowledge Survey

NOTE: Your answers to these questions WILL NOT affect your
grade in any way; they merely help us understand how effective
the experimental material presented to you about algorithms was.
Please answer each question to the best of your ability.

Please Enter Your ID:
(this is the 3-digit code you picked to
identify your participation efforts)

225

Al. The psueudocode to the right
implements which popular sort
algorithm?

A Quicksort
B Mergesort
C Bubble Sort
D Insertion Sort
E Selection Sort
F I Dont Know

A2. The psueudocode to the right
implements which popular sort
algorithm?

A Quicksort
B Mergesort
C Bubble Sort
D Insertion Sort
E Selection Sort
F I Dont Know

1. 1 For x= 1 to N-1
3. for y = x+1 to N
4. ifARRAY[y-1]>ARRAY[y]
5. swap ARRAY[y-1] and ARRAY[y]
6. endif
7. endfor
8. endfor

1. for x= 1 to N-1
2. CHOICE = x
3. for y = x+1 toN
4. if ARRAY[y] < ARRAY[CHOICE]
5. CHOICE = y
6. endif
7. endfor
8. if CHOICE not = x
9. swap ARRAY[CHOICE] and ARRAY[x]
10 endif
11 endfor

A3. Show the order of elements in ARRAY after the following number of passes have occurred, using the
Selection Sort algorithm. Remember that a single pass is the execution of all statements in the body of the
loop controlled by variable x.

Input ARRAY 1 2 3 5 4

After 1 pass
(i.ewhenjc= 1)

After all passes
(i.e. after JC has looped from 1 to N-1)

^Comparisons #Swaps

A4. After 3 passes, which of the following are true about the Selection Sort algorithm:

A We are guaranteed that no more than 2 swap operations will be required
B We are guaranteed that the first 3 items will always be in proper position
C We cannot make any guarantees until we know the order of the input
D All of the above are true
E None of the above is true

A5. If the data is already sorted into the proper order, can you think of a way for the Selection Sort
algorithm to recognize this and prevent unnecessary comparisons and work?

A6. If you read the section in your textbook that covers the Selection Sort algorithm, please indicate
about how many minutes you spent doing it:

226

Bl. What would happen if line #15 was altered
to read:

ifLeftHalfTxl>RizhtHalfry]

A ResultArray would be in ascending order

B ResultArray would have scrambled results

C ResultArray would be in descending order

D None of the above ___

1- Procedure MergeSort(ARRAY)
2- if length(ARRAY) > 1
3- Middle = length(ARRAY)/2
4- LeftArray = MergeSort(Array[1.. Middle])
5- RightArray = MergeSort(Array[Middle+1..N])
6- ResultArray = Merge (LeftArray, RightArray)
7- Return ResultArray
8- Else
9- Return Array
10- Endif
11- EndMergeSort

12- Proc Merge(LeftHalf,RightHalf)
13- initialize x, y, z to 1
14- loop
15- if LeftHalf[x] < RightHalf[y]
16- Result[z] = LeftHalffx]
17- Increment X and Z
18- else
19- Result[z] = RightHalf[y]
20- Increment y and z
21- endif
22- until RightHalf or LeftHalf is empty
23- Flush remaining elements from RightHalf

(or LeftHalf) to Result
24- return Result
25- endMerge |

B2. This MergeSort algorithm will be used to sort an array of test scores. Which of the following is true:

(a) The sort will take longer and work harder if the original scores are ordered from smallest to largest

(b) The sort will take longer and work harder if the original scores are in random order

(d) The sort will take longer and work harder if the original scores are ordered from largest to smallest

(d) The sort will do the same amount of work and time no matter the order of the original elements.

(e) None of the above are true

B3. If the following data was passed to the Merge procedure on line #10? indicate what would be
returned in the array called Results. Use the unaltered version of the algorithm.

LeftArray
51 57 74

RightArray
19 27 30 33 71

ResultArray

227

B4. Using algorithm above on the data shown below, indicate how many calls to the MergeSort
and Merge procedures would be needed to place the data into ascending order, and the contents of
the array when the call(s) are completed:

ARRAY:

Before Evan Moe Al Dirk Carl Zed Art

After •

of calls to MergeSort: # of calls to Merge:

B5. If you read the section in your textbook that covers the MergeSort algorithm, about how many
minutes do you remember it took you?

Please list some of the things you liked about the Algorithm Visualization Program:

Please list some of the things you didn't like, or provide some suggestions we could use to improve the
program:

THANK YOU FOR PARTICIPATING—
WE TRULY APPRECIATE YOUR TIME AND SUGGESTIONS!

228

D.7. EXPERIMENTS WITH OTHER ALGORITHM ANIMATION SYSTEMS

D.7.1. POSTTEST FOR EXPERIMENT IV

Each test included a cover page with space for the subject to enter his or her identification code (a

3 digit code that gave anonymity to each participant but allowed us to track performance through

the phases of the experiment), and the disclaimer shown below:

Knowledge Survey

NOTE: Your answers to these questions WELL NOT affect your
grade in any way; they merely help us understand how effective
the experimental material presented to you about algorithms was.
Please answer each question to the best of your ability.

Please Enter Your ID:
(this is the 3-digit code you picked to
identify your participation efforts)

229

Procedure DijkstraShortestPath
I - Initialisation: mark each vertex in table as UnKnown

with infinite distance and no parent
2- Pick a Starting Vertex and make its distance in table = 0
3- Repeat
4- J = vertex with minimal distance among UnKnown vertices

in table
5- mark J as Known in table
6- for each vertex R still UnKnown in table
7- if there is an edge from J to R
8- if Distance^] + EdgeWeight(J,R) < Distance(R]
9- Distance[R] = Distance^] + EdgeWeight(J,R)
10- Parent[R] = J
II - until all vertices are Known in table

Vertex
id

Known? Distance

(dv)

Parent

id-1 UnKnown 00

id-2 UnKnown 00 -
id-3 UnKnown 00 -
id-4 UnKnown 00 -

This table represents the data structure used by Dijkstra 's
Shortest Path algorithm

1. What drives the order in which vertices are marked as Known?

Line #1 of the algorithm above on the graph below leads to a table initialized as indicated:

9

Vertex Known? Distance
(dv)

Parent
(Pv)

A UnKnown 00 -
B UnKnown 00 —
C UnKnown 00 -
D UnKnown 00 -

2. Indicate the order that nodes would be marked as 'Known' if vertex A was the starting point
(ex: A-B-C-D)

3. Show the final contents of the data structure in the table below (right) if vertex A was the Starting
Point

Before Execution
Vertex Known? Distance

(dv)

Parent
(Pv)

A UnKnown 0
B UnKnown 00 -
C UnKnown 00 —
D UnKnown 00 -

- Upon Completion
Vertex Known? Distance

(dv)

Parent
(Pv)

A 0
B
C
D

4. How many times will the algorithm consider/examine the distance to vertex D in solving problem #3

230

5. What can be said after k (some arbitrary number) iterations of lines 3-11:

(f) About k2 comparisons will have been made

(g) Approximately log k comparisons will have been made

(h) Exactly & vertices will have been visited

(i) k unique parents will have been identified

(j) At least k solution paths will have been found

6. Dijkstra's algorithm reaches line 4 withihe following results (the graph is not shown for this data):

Vertex Known? Distance
(dv)

Parent
(Pv)

1 Known 0
2 Known 1 1
3 UnKnown 3 2
4 UnKnown 4 1

What will J be when line 4 is executed?

7. What would the weights have to be in order to force the algorithm to mark the nodes as Known in the
order:

R-T-W-S
5

8. Given the following graph, fill in the appropriate values in the table as they would appear after
the algorithm finished executing. The bold lines indicate the shortest paths from source vertex
A to each of the other nodes that the algorithm found.

Vertex Known
7

Distance (dv) Parent
(p*)

A 0
B
C
D
E

231

D.7.2. SCREEN CAPTURE OF VISUALIZATION USED BY AA GROUP

^^^Bi^BtB^^E3ffi^^^S^^'->^'"'" r. -ID|*I miiiim 11111——■wi'ii A

[Tjjüj"J Step | Slow <| _|_>J F»«

IM.IVM|E 1,1lül'IIWHW^MB^B^^H^fe^j,y^vg ■ i -inlxF

Dijkstra's Algorithm

Init-Sinele-Source(G,start)

s = {}

Q = {V[G]}

while Q!={} do

u = Extract-Min(Q)

S = S U{u}

for each vertex v £ Adj[u] do

if d[v]>d[u]+w(vi,v) then

d[v] = d[u] + w(u,v)

KffJ
pi[v] = u

L | R | D | U | In |:Ollt| Debug | Rellesh| Close j

0J_?J_LIJL1_!!LLH Debug | Refresh j Close |

232

D.8. EXPERIMENT; ABLATION OF FEATURES

D.8.1. POSTTEST FOR FEATURES ABLATION STUDY

Each test included a cover page with space for the subject to enter his or her identification code (a

3 digit code that gave anonymity to each participant but allowed us to track performance through

the phases of the experiment), and the disclaimer shown below:

Knowledge Survey

NOTE: Your answers to these questions WILL NOT affect your
grade in any way; they merely help us understand how effective
the experimental material presented to you about algorithms was.
Please answer each question to the best of your ability.

Please Enter Your ID:
(this is the 3-digit code you picked to
identify your participation efforts)

233

1. Does the pseudocode to the right sort
the elements in ARRAY into ascending
or descending order?

2. Make pen and ink changes to the
pseudocode so that it produces a sorted
sequence that is the opposite of what it
currently generates.

1- Procedure QuickSort(ARRAY[L.R])
2- if length(ARRAY) > 1
3- initialize VALUE = ARRAY[L]
4- initialize LPtr = L+1 and RPtr = R
5- repeat
6- while RPtr > LPtr and ARRAY[LPtr] < VALUE
7- increment LPtr
8- while RPtr > LPtr and ARRAY[RPtr] > VALUE
9- decrement RPtr
10- swap ARRAY[RPtr] and ARRAY[LPtr]
11 - increment LPtr and decrement RPtr
12- until RPtr <= LPtr
13- swap VALUE in ARRAY[L] with ARRAY[RPtr]
14- ARRAY[L.RPtr-1] = QuickSort(ARRAY[L. RPtr-1])
15- ARRAY[RRr+1..R]=QuickSort(ARRAY[RPtr+1.. R)
16- else
17- return ARRAYfL.R]
18- endif
19- endproc

3. What can be said after k (some arbitrary number) calls to Quicksort :

(k) Exactly k-1 Merge operations will have been performed

(1) No more than k swaps will have been made.

(m) About k2 comparisons will have been made

(n) At least k elements will always be in place regardless of the original order of the input

4. If the following data was passed to the Quicksort procedure, indicate the contents of the ARRAY after
the first execution of the loop depicted in lines #5-13. Use the unaltered version of the pseudocode in
question 1.

Original Input
35 14 26 9 71 55 33

Result after 1st execution of lines 5-13
ARRAY[L...RPtr-1] ARRAYIRPtrl ARRAY[RPtr+1..R]

5. The effect(s) of the statements on lines 3-13 of Quick Sort include (circle all that apply):

(a) Always places at least one value into its final sorted position

(b) Migrates smaller elements to the left and large elements to the right

(c) Places all elements in the right hand side into sorted order

(d) Divides the array into equal sized partitions for sorting

(e) All of the above

(f) None of the above

234

6a. If the values [21,14,40,25,55,20] were passed to Quicksort, what pair of numbers would be exchanged

first?

(a) 14 and 21

(b) 14 and 40

(c) 20 and 40

(d) 21 and 40

(e) none of the above

6b. What pair would be exchanged second?

(a) 14 and 20

(b) 14 and 21

(c) 20 and 21

(d) 25 and 55

(e) none of the above

7. Quicksort reaches line 14 with the following results:

Afier lines 1-13:

ARRAY[L.RPtr-1]

4,1,6,3,7

ARRAY[RPtr]

The next time line 3 is reached, what will VALUE contain?

ARRAY[RRr+1..R]

18,29,11,20

What two numbers would be the next to be swapped?

235

D.9. EXPERIMENT; DUAL VIEW ABLATION

D.9.1. POSTTEST FOR DUAL VIEW ABLATION

Each test included a cover page with space for the subject to enter his or her identification code (a

3 digit code that gave anonymity to each participant but allowed us to track performance through

the phases of the experiment), and the disclaimer shown below:

Knowledge Survey

NOTE: Your answers to these questions WILL NOT affect your
grade in any way; they merely help us understand how effective
the experimental material presented to you about algorithms was.
Please answer each question to the best of your ability.

Please Enter Your ID:
(this is the 3-digit code you picked to
identify your participation efforts)

Note: The top performer in each of the four lab groups

will win a cash prize! Good luck!

Winners will be announced next week usine the 3-disit ID code

236

1. Does the pseudocode to the right
sort the elements in ARRAY into
ascending or descending order?

2. Make pen and ink changes to the
pseudocode so that it produces a sorted
sequence that is the opposite of what it
currently generates.

1- Procedure QuickSort(ARRAY[L.R])
2- if length(ARRAY) > 1
3- initialize VALUE = ARRAY[L]
4- initialize LPtr = L+1 and RRr = R
5- repeat
6- while RPtr > LPtr and ARRAY[LPtr] < VALUE
7- increment LPtr
8- while RPtr > LPtr and ARRAYfRPtr] >= VALUE
9- decrement RPtr
10- swap ARRAYfRPtr] and ARRAY[LPtr]
11 - increment LPtr and decrement RPtr
12- until RPtr <= LPtr
13- swap VALUE in ARRAY[L] with ARRAY[RPtr]
14- ARRAY[L.RPtr-1] = QuickSort(ARRAY[L. RPtr-1])
15- ARRAY[RPtr+1..R]= QuickSort(ARRAY[RPtr+1.. R)
16- else
17- return ARRAY[L.R]
18- endif
19-endproc

3. The effect(s) of the statements on lines 3-13 of Quick Sort include (circle aH that apply):

(a) Migrates smaller elements to the left and large elements to the right

(b) Always places at least one value into its final sorted position

(c) Places all elements in the right hand side into sorted order

(d) Divides the array into equal sized partitions for sorting

(e) None of the above

4. If the following data was passed to the Quicksort procedure, indicate the contents of the ARRAY
after the first execution of the loop depicted in lines #5-13. Use the unaltered version of the
pseudocode in question 1.

 Original Input
35 14 26 71 55 33

Result after 1st execution of lines 5-13
ARRAY[L..RPtr-1] ARRAYfRPtr] ARRAY[RPtr+1..R]

5. What can be said after k (some arbitrary number) calls to Quicksort:

(a) Exactly k-1 Merge operations will have been performed

(b) No more than k swaps will have been made.

(c) About k2 comparisons will have been made

(d) Approximately k elements will always be in place regardless of the order of the input

237

6a. If the values [21,14,40,25,55,7,20] were passed to Quicksort, what pair of numbers would be

exchanged first?

and

6b. What pair would be exchanged second?

and

6c. What pair would be exchanged third?

(a) 7 and 21

(b) 14 and 21

(c) 20 and 21

(d) There won't be a third exchange

6d How many calls to Quicksort will it take to complete the sort from start to finish, using the data in
#6a?

(a) 3

(b) 4

(c) 7

(d) 11

(e) None of the above

7. A different execution of Quicksort reaches line 14 with the following results:

After lines 1-13:

ARRAY[L.RPtr-1] ARRAY[RPtr] ARRAY[RPtr+1..R]

4,1,6,3,7,2 8 18,29,11,20

The next time line 3 is reached, what will VALUE contain?

What two numbers would be the next to be swapped?

238

D.10. EXPERIMENT: SINGLE VIEW ABLATION

D.10.1. POSTTEST FOR SINGLE VIEW ABLATION STUDY

Each test included a cover page with space for the subject to enter his or her identification code (a

3 digit code that gave anonymity to each participant but allowed us to track performance through

the phases of the experiment), and the disclaimer shown below:

Knowledge Survey

NOTE: Your answers to these questions WILL NOT affect your
grade in any way; they merely help us understand how effective
the experimental material presented to you about algorithms was.
Please answer each question to the best of your ability.

Please Enter Your ID:
(this is the 3-digit code you picked to
identify your participation efforts)

Note: The top performer in each of the four lab groups

will win a cash prize! Good luck!

Winners will be announced next week using the 3-digit ID code

239

1. In Dijkstra's Shortest Path algorithm, what drives the order in which vertices are marked as

Visited?

Based on the example graph below, the initialization step of the Shortest Path algorithm leads to a table
initialized as indicated:

Vertex Visited? Distance
(dv)

Parent
(Pv)

A UnVisited 00 -
B UnVisited 00 -
C UnVisited 00 —
D UnVisited 00 -

2. Indicate the order that nodes would be marked as 'Visited' if vertex A was the starting point (ex: A-
B-C-D)

3. Show the final contents of the data structure in the table below (right) if vertex A was the Starting
Point

Before Execution
Vertex Visited? Distance

(dv)
Parent

(Pv)

A UnVisited 0 -
B UnVisited 00 ~
C UnVisited 00 ~
D UnVisited 00 -

Upon Completion
Vertex Visited? Distance (dT) Parent

(Pv)

A 0
B
C
D

4. How many times will the algorithm consider/examine the distance to vertex D in solving problem #3

5. What can be said after k (some arbitrary number) iterations/loops of the basic ShortestPath algorithm:

(a) About k2 comparisons will have been made

(b) Approximately log k comparisons will have been made

(c) Exactly k vertices will have been visited

(d) k unique parents will have been identified

(e) At least k solution paths will have been found

240

6. Dijkstra's algorithm is about to begin another iteration, with interim results as shown in the table
below (note the graph is not shown for this data):

Vertex Visited? Distance
(dY)

Parent
(Pv)

1 Visited 0
2 Visited 1 1
3 UnVisited 3 2
4 UnVisited 4 1

Based on these interim results, what Vertex will be the next one to be marked as Visited?

7. What would the weights have to be in order to force the algorithm to mark the nodes as Visited in the
order:

R-T-W-S

8. Given the following graph, fill in the appropriate values in the table as they would appear after the
algorithm finished executing. The bold lines indicate the shortest paths from source vertex A to each
of the other nodes that the algorithm found.

Vertex Visited? Distance
(dv)

Parent
(Pv)

A 0
B
C
D
E

241

9. The statements below represent the steps involved in the Shortest Path algorithm, but they are
obviously out of order. Number the statements below to indicate their proper order. Note that statement
#1 is already marked for you. As a convenience, the table used by the algorithm is shown to the right.

Line

Algorithm Statements Vertex
id

Visited? Dist
(dr)

Parent

EndRepeat id-1 UnVisited 00 -
id-2 UnVisited 00 -
id-3 UnVisited 00 _

if Distance^] + EdgeWeight(J,R) < Distahce[R] id-4 UnVisited 00 -

mark J as Visited in table This table represents the data structure used
by Dijkstra 's Shortest Path algorithm

ParentJR] = J

J = vertex with minimal distance among UnVisited vertices in
table

Endif

Pick a Starting Vertex and make its distance in table = 0

Distance[R] = Distance[J] + EdgeWeight(J,R)

if there is an edge from J to R

for each vertex R still UnVisited in table

Endif

until all vertices are Visited in table

1 mark each vertex in table as UnVisited with infinite distance and
no parent

Repeat

APPENDIX C: USAGE AND INTERACTION DATA

This section contains figures, tables and data gathered from subjective surveys

that subjects completed in two of the experiments, and from user interaction profiles that

Hal Vis logged during the experiments.

The figure below shows the number of times the animations on the Detailed View

(DV) and Populated View (PV) were executed by students for each of the experiments

reported in this document. In the case of the ablation studies where selected features or

views were removed, only the totals for the group receiving all views are provided.

Animation Execution Summary

a > <
•a
£
3
Ü
0)
X

111
w
u
E

7 -

6 -

□ DV

|PV

"liililhiiiill
Exp-la
(MS)

1.8

3.3 2.1

Exp-lb
(MS)

2.5

Exp-lb

(OS)

3.4 1.9

Exp-ll
(BS)

2.9

Exp-ll
(SS)

2.5

2.6

Exp-lll
(SS)

2.6

2.7

Exp-lll
(MS)

4.5

4.6

Exp-IV
(SP)

4.3

2.6

(QS)

5.9

(QS)

4.5

(SP)

3.3

3.8

Group (Algorithm)

Figure C.1. Summary of Animation Executions for All Experiments

242

243

C.1 EXPERIMENT II USAGE AND SATISFACTION DATA
A satisfaction survey was provided to all subjects to assess their perception of the HalVis system

and their general attitudes formed during interacting with it. The scale for the satisfaction survey

ranged from (-2) for very bad to (+2) for very good. The columns Max and Min indicate the

highest and lowest rating of all the responses.

Survey Item Average Max Min
Use of textual descriptions (pop ups) 1.3 2 1
Use of audio 0.8 2 -1
Use of color to highlight actions 1.5 2 0
use of analogies/examples to introduce algorithms 1.6 2 0
Use of hyperlinking to find related information 1.4 2 0
Explanation of learning objectives on each screen 1.1 2 0
Use of pop-up questions 1.0 2 -1
Clarity of button and menu names 1.4 2 -1

DETAILED VIEW ITEMS
Effectiveness of textual description of algorithm 1.2 2 0
Use of contextual explanations during animation 1.3 2 0
Highlighting pseudocode statements during animation 1.5 2 0
Counters that reflect the progress of the algorithm 1.4 2 1
Ability to alter the speed of the animation 1.8 2 1
Ability to rerun the animation 1.9 2 1
Did you try changing the data (1=Yes, 0=No) 0.6 1 0
How many times did you run the animation 2.9 4 2

Actual figure from usage logs: 5.5 10 2

POPULATED VIEW ITEMS
What was your impression of the Populated View 1.3 2 0
Counters that reflect the progress of the algorithm 1.4 2 1
Ability to predict the performance of the algorithm 1.1 2 -1
Ability to rerun the animation 1.6 2 1
Ability to alter the speed of the animation 1.9 2 1
Use of colors to illustrate actions of the algorithm 1.4 2 0
How many times did you run the animation 2.6 4 1

Actual figure from usage logs: 4.1 7 2
Data case used most (3=BestCase,2=Random,1=WorseCase) 1.9 3 1

OVERALL IMPRESSIONS
What was your impression of this program 1.4 2 1
What was your impression of the user interface 1.3 2 0
What was your impression of the navigation 1.3 2 1

Table C.1. Experiment II Satisfaction Survey Data

244

Other observations from the survey:

• 64% gave use of analogies to introduce algorithms the highest rating (2)

• 100% rated use of analogies #1 or #2

• 86% understated the number of times they thought they ran DV animations compared to

actual times they ran it. 86% also understated the number of times they ran PV animations

• 71 % used random ordering for the populated view. 12% used worse case ordering once.

• 57% accessed the control panel on the DV

• Only 10% tried changing the animation data (90% didn't) in the Detailed View.

• 84% said they would choose to use the HalVis system to learn other algorithms if given the

choice. The other 16% indicated no specific choice.

245

The figure below compares the number of times that students remembered running the

animations, as reported in the subjective survey, to the actual number of times as reported in the

HalVis usage logs. Except for student #23, everyone believed they ran the animations fewer

times than they actually did.

Comparison of Actual & Perceived Runs
(Detailed View, Exp II)

12 -,

10 -

8 -

(0
0)

E
H

6 -

4 -

2 - 4* ■■A**

\A.J

■A' \/ '*v \ / .4

0 -
1 3 4 7 10 12 17 18 19 22 23 24 27 28

-DV-Runs (A ctual) 3 6 6 6 7 5 7 10 4 7 2 6 2 6

..-A-. . DV •runs (Su rvey) 2 4 3 2 2 3 4 3 2 3 4 3 2 3

User

Figure C.2. Actual and Perceived Detailed View Animation Executions, Experiment II

246

Com parison of Actual & Perceived Runs
(Populated View, Exp II)

8

7 -

6 -

E

5 -

4 - /*—A / \ /
■ - rf \

\ A
1-

3 -

2 -

// \\ / V/ V---A---A.
/* \ / * *

_o x \/ * ■ \m .A----*

1
A

>
>

1 - ■*** A

0 -
1 3 4 7 10 12 17 18 19 22 23 24 27 28

PV-Runs (Actual) 2 6 5 2 5 3 5 5 5 7 3 3 3 3

- - -A- - . PV-Runs (Survey) 2 4 4 1 2 2 4 3 3 3 2 4 1 2

User

Figure C.3. Actual and Perceived Populated View Animation Executions, Experiment II

247

Positive Comments from Experiment II Subjective Survey

I liked:
the animations 6 comments
the examples and analogies 3 comments
the questions & making predictions 3 comments
the step-by-step progress on algorithm pseudocode 2 comments
seeing efficiency.. .("I didn't realize there was that much difference") 1 comment
the voice explanations during the animation 1 comment

The software:
made the algorithm easier to understand 2 comments
was much better than reading a book 1 comment
made learning algorithms more interesting 1 comment

Negative Comments from Experiment II Subjective Survey

Sound:
The sound was annoying
It could use more sound

1 comment
2 comments

Text:
The text was too long and dull
Needs more detail in the textual explanations

2 comments
1 comment

The system was too simplistic.. .almost like we weren't supposed to know
anything about sorting

Table C.2. Summary of Student Remarks and Comments Following Experiment II

248

C.2 EXPERIMENT VI USAGE AND SATISFACTION DATA

Survey Item CDP CD CP DP
Use of textual descriptions (pop ups) 1.0 1.1 1.1 1.4
Use of audio 0.1 -0.1 0.0 -0.1
Use of color to highlight actions 1.3 1.4 1.3 1.3
Use of hyperlinking to find related information 1.3 1.6 0.9 1.6
Explanation of learning objectives on each screen 1.3 1.0 0.8 0.8
Use of pop-up questions 1.3 0.3 1.2 0.8
Clarity of button and menu names 1.1 1.1 0.6 1.1

DETAILED VIEW ITEMS
Ability to alter the speed of the animation 1.1 1.1 0.8 1.5
Ability to rerun the animation 1.9 1.3 1.3 1.4
Did you try changing the data (1=Y, 0=N) 1.0 1.0 0.7 0.5
How many times did you run the animation 3.9 3.5 3.6 3.6

OVERALL IMPRESSIONS
What was your impression of this program 1.3 0.4 1.3 1.3
What was your impression of the user interface 1.1 1.3 1.3 0.9
What was your impression of the navigation 1.0 1.4 1.2 0.5

Table C.3. Experiment VI Satisfaction Survey Data

0)
D)
IB

>
<
c
3

DC

M
0)

E

Comparison of Actual & Perceived Runs
(Ab-ll)

12.0 -,

10.0 -

8.0 -

6.0 -

4.0 -

2.0 -

0 0 -
CDP CD CP DP

10.9 4.9 5.7 8.1
(Actual)

...4... Animation Runs
(Survey)

3.8 3.4 3.6 3.6

Figure C.4. Actual and Perceived Animation Executions, Experiment VI.

249

Positive Comments from Experiment VE Subjective Survey

I liked:
the animations ("made understanding faster and easier...")
the examples and analogies
the questions & making predictions ("the question about rearranging the

out-of-order pseudocode was very helpful")
the step-by-step progress shown by highlighting algorithm pseudocode
the Efficiency screen was quite revealing")
the text explanations
being able to enter my own data

15 comments
2 comments
3 comments
2 comments
3 comments
1 comment
2 comments
5 comments

The software:
made the algorithm easier to understand
was much better than reading a book
made learning algorithms more interesting

2 comments
1 comment
1 comment

The hyperlinks were helpful 1 comment

Negative Comments from Experiment VII Subjective Survey

The text:
There was too much text
The text was small and hard to read
There wasn't enough text to explain the steps

2 comments
1 comment
3 comments

The software:
Needed more sound
Needed less color

1 comment
1 comment

The question about rearranging the out-of-order pseudocode was hard 6 comments

The animation:
Needed a reverse button
Was hard to stop once it was started
The highest speed was not fast enough
The populated view mooved too quickly, even at the slowest speed

setting
Should only be allowed to advance by mouse clicks

1 comment
3 comments
2 comments
1 comment
1 comment

I didn't like the algorithms expressed as pseudocode 1 comment

Table C.4. Summary of Student Remarks and Comments Following Experiment VI

APPENDIX D. THE JAWAA COMMANDS

Researchers at Duke University (Pierson & Rodger, 1998) have created a system called

JAWAA that implements the XTango command set using Java, which allows Internet delivery of

animations. They have extended the XTango command set to facilitate animation of complex

data structures, making it one of the best general purpose animation systems available. This

section is provided for the convenience of the reader to include a description of the JAWAA

script commands that the JA VIZ system also recognizes (because of its JAWAA heritage). This

is a replica of the command syntax summary available at

http://www.cs.duke.edu/~wcp/commands.html.

D.I. GRAPHIC OBJECT CREATION COMMANDS

D.1.1. PRIMITIVE OBJECTS

• circle name
x
y
diameter

string uniquely identifying this object
x coordinate (int)
y coordinate (int)
(int)

color
bkgrd

color of circle drawn
color indicating background

Example: circle cl 20 20 30 black transparent

This creates a circle with the upper left corner at coordinate 20, 20,
with a diameter of 20 and with the circle black and the interior
transparent

250

251

line name
xl

yi
x2
y2
color

string uniquely identifying this object
starting x coordinate (int)
starting y coordinate (int)
ending x coordinate (int)
ending y coordinate (int)
color of line drawn

Example: line 11 20 20 40 40 30 black

This will create a black line extending from 20,20 to 40,40

text name quoted string uniquely identifying this object
X x coordinate (int)

y y coordinate (int)
text string of text, in quotes
color color of text

Example text tl 40 40 "HELLO" red

This will write the string "HELLO" at 40,40 in red

rectangle name
xl

yi
x2
y2
color
bkgrd

string uniquely identifying this object
topleft x coordinate (int)
topleft y coordinate (int)
bottomright x coordinate (int)
bottomright y coordinate (int)
color of rectangle drawn
background color

Example: rectangle rl 10 20 100 120 black red

This will create a rectangle with its upper left corner at 10,20 and
lower right corner at 100,120. It will be outlined in black and red in
the interior

252

polygon

Example

name string uniquely identifying this object
length number of points in coordinate list
xl, yl ... xn, list of coordinates connected by lines to form the
yn polygon
color color of polygon drawn
bkgrd color of polygon background

polygon pi 3 15,10 30,5 40,20 yellow blue

This will create a triangle with vertices at (15,10), (30,5), and
(40,20). The edge will be yellow with blue on the interior

D.2. DATA STRUCTURE OBJECT CREATION COMMANDS

D.2.1. TREE OBJECTS

The tree command will create a binary tree based on the connections listed in the command. All
node names must be integers less than 100. Connections made between nodes will be created
automatically using names in the form "startNode"-endNode" where" startNode" has been
replaced with the name of the node from which the connection orginates.

tree name string uniquely identifying this object
x x coordinate of root node(int)
y y coordinate of root node(int)
width (int)
(start 1, endl) list of connections between nodes. The startNode
... (startn, must have already been mentioned as an endNode
endn) or must be the root node.

Example tree tl 20 20 300 (1,2) (1,3) (2,4)

This will create a tree with width 300 at 20,20 with the connections
described

addNode

Example

name name of tree
(start-i, end-i) connection to add to tree

addNode tl (3,5)

This will add the connection (3,5) to tree tl

253

D.2.2. GRAPH OBJECTS

node

Example

connectNodes

name
x
y
diameter
color
bkgrnd

string uniquely identifying this object
x coordinate (int)
y coordinate (int)
int
color of circle drawn
color indicating background

node nl 40 30 20 black transparent

This will create a node at 40,30 with diameter 20 using a black
outline and a transparent interior.

name string uniquely identifying this object
nodel string name of the node arc is coming from
node2 string name of the node arc is going to
color color of arc
animateDraw " "true "or" "false" indicating whether to animate

the arc draw

Example connectNodes al 2 3 black true

This command will animate the connection of node 2 to node 3.

• marker

Example

moveMarker

Example

name string uniquely identifying this object
nodeName node where marker starts
diameter radius of marker (int)
color color of marker edge
bkgrnd color of background

marker ml 2 10 black red

This will create a black marker with red interior located at node 2

name string uniquely identifying this object
nodel string identifying the node to leave
node2 string identifying the destination node
connectionNm string identifying the arc/edge to follow
color color of marker edge
bkgrd color of background

moveMarker ml 2 3 al black blue

Animates the marker's movement from node 2 to 3 along arc "al"

254

graph name
x

y
type

width
(start 1, endl)

(startn, endn)

name of graph to create
x coordinate of upper left corner of graph
y coordinate of upper left corner of graph
string indicating drawing style, can be "CIRCLE"
or "NORMAL"
width of graph
list of connections that make up the graph

Example graph gl 1 1 NORMAL 300 (1,2) (1, 6) (6, 2) (6,3) (2,3) (5, 1)

Creates a normal graph at 1,1 with width 300 using the listed
connections to build the connections. As with trees, the connections
created are named with the form: "startNode"-endNode". Note that
NORMAL graphs must be connected, while CIRCLE graphs can
have unconnected nodes

addNode name name of graph
node name of node to add

Example addNode gl 10

addEdge

Example

Adds node 10 to graph gl. Note that this command can only be
used with graphs of type CIRCLE

name name of graph
(start-i, end-i) connection between two nodes

addNode gl (10,11)

Adds a connection between nodes 10 and 11. Note that if used with
a CIRCLE graph neither node must already be in the graph, but
when used with NORMAL graph one of the nodes must already be
in the graph

D.2.3. ARRAY OBJECTS

255

array

Example

name name of array
X x coordinate

y y coordinate
length number of cells in array
value 1- valuen list of cell values
orientation can be "horz" or "vert"
color color of array outline
bkgrd color of background

array 20 30 3 4d "" hello horz black red

Creates a horizontal array at 20,30 with 3 cells. This first cell
contains "4d", the second is blank, and the third contains "hello".
All cells in arrays can be accessed individually as rectangles. After
creating an array called v"al" we could access the fourth cell by
referring to an object called vval[3]". For example if we wanted to
change the color of this cell to blue we would use the command:
changeParam al[3] bkgrd blue

D.2.4. STACK OBJECTS

• stack

Example

push

Example

name name of stack
X x coordinate
y y coordinate
length length of stack contents
valuel-valuen list of stack values, beginning with top item
color color of stack

stack si 30 40 3 1 fred 56 black

Creates a stack with the elements 1, "fred", and 56

name
value

name of stack to push on
value to push on stack

push si 34

Pushes the value "34" on stack si

256

pop

Example

name name of stack to pop from

pop si

Pops the top item off stack si

D.2.5. QUEUE OBJECTS

• queue

Example

enqueue

Example

dequeue

Example

name name of queue
x x coordinate
y y coordinate
length current length of queue contents
value 1-valueN list of queue values beginning with first item
color color of stack

queue ql 30 40 3 1 fred 56 black

Creates a queue with the elements 1, "fred", and 56

name
value

name of queue to push on
value to put on the queue

enqeue ql 34

Puts the value "34" on the end of queue ql

name name of queue to dequeue

deqeue ql

Removes the first value of queue ql

257

D.3. ACTION COMMANDS

• delay

Example

• changeParam

Example

Example

Example

• moveRelative

Example

• groupObjects

Example

delete

Example

int indicating length of pause in milliseconds length

delay 100

This will delay the animation for 1/10 a second

name string indicating which object will be altered
ParamName name of parameter to change
New Value new value of parameter

changeParam cl color red
This will change the color of el's outline to red.

changeParam cl bkgrd blue
This will change the color of el's interior to blue

changeParam tl text "HELLO"
The text object tl will now display "HELLO"

name
x
y

object to move
amount to add to x position
amount to add to y position

moveRelative rl 30 40
Animates the movement of rl to a point above and to the left of its
current position.

name name of aggregate of several objects
namel-nameN list of objects to group together

groupObjects groupl cl rl b2

This will create a new object that contains the objects cl, rl, and
b2 which can then be treated as one object. For example, they could
be moved together.

name name of object to delete

delete gl

This will remove gl from the animation

